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Abstract. Separating shared and independent features is crucial for
multi-phase contrast-enhanced (CE) MRI synthesis. However, existing
methods use deep autoencoder generators with low parameter efficiency
and lack interpretable training strategies. In this paper, we propose
Flip Distribution Alignment Variational Autoencoder (FDA-VAE), a
lightweight feature-decoupled VAE model for multi-phase CE MRI syn-
thesis. Our method encodes input and target images into two latent dis-
tributions that are symmetric concerning a standard normal distribution,
effectively separating shared and independent features. The Y-shaped
bidirectional training strategy further enhances the interpretability of
feature separation. Experimental results show that compared to exist-
ing deep autoencoder-based end-to-end synthesis methods, FDA-VAE
significantly reduces model parameters and inference time while effec-
tively improving synthesis quality. The source code is publicly available
at https://github.com/QianMuXiao/FDA-VAE!

Keywords: Multi-Phase MRI Synthesis - Variational Autoencoder -
Feature Alignment - Medical Image Synthesis.

1 Introduction

Multi-phase contrast-enhanced (CE) MRI provides essential diagnostic informa-
tion for assessing organ lesions, tumors, and vascular abnormalities. However,
this imaging technique is still limited by the long scanning time and nephro-
toxicity risk caused by gadolinium-based contrast agents. Medical image super-
resolution [I33] and synthesis [8I21] techniques address these challenges by gen-
erating high-quality or missing images from low-quality or existing scans. In CE
MRI, synthesizing different enhanced-phase images from unenhanced-phase can
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Fig. 1. Overview of existing AE-based medical image synthesis strategies. (a) Basic
one-to-one autoencoder. (b) Multi-phase many-to-one autoencoder. (c) Autoencoder
with latent space comparative learning. (d) Variational Autoencoder (VAE). (e) Our
proposed method: Flip Distribution Alignment Variational Autoencoder (FDA-VAE).

effectively reduce scanning time and mitigate the health risks associated with
contrast agents.

Current medical image synthesis methods can be categorized into Diffusion-
based [23/1828] and Autoencoder-based (AE-based) approaches [129I3TI3212].
Diffusion-based methods generate high-quality synthetic images but require sub-
stantial computational resources and are constrained by inflexible training strate-
gies. In contrast, AE-based methods provide greater flexibility in training by
allowing direct manipulation of latent space structures and optimization objec-
tives.

Existing AE-based models employ different feature extractors to improve
representation learning. Traditional CNN-based AEs [12] (Figll] (a)) suffer from
limited receptive fields, making it difficult to capture long-range dependencies.
Vision Transformers (ViTs) [T0J3T] address this issue but introduce high compu-
tational costs. Recently, state-space models (SSMs) such as Mamba [ITI2] have
emerged as efficient alternatives. Some studies further integrate hybrid architec-
tures [AB2UT6I29I6] that combine CNNs and Transformers to balance efficiency
and performance. However, optimizing the encoding-decoding structure remains
crucial for high-quality synthesis, as shown in Fig (b)-(d). Some approaches in-
tegrate multi-phase input features to generate the target modality Fig (b). Oth-
ers use latent feature contrastive learning [19] Fig[l] (c) or structure-supervised
loss [7I20] to reinforce shared features between the input and target modali-
ties. Furthermore, some studies encode latent features as probabilistic distribu-
tions [T4J4UT55] Fig (d). This improves the smoothness of the latent space. It
also enhances uncertainty modeling and generation diversity.

However, there are still some problems with these strategies: (1) Many-to-one
methods require paired multi-phase data for training. (2) One-to-one methods
focus only on cross-modality mappings or shared features but neglect their in-
dependent features. (3) Existing methods still rely on deep autoencoders for
cross-modality mapping even under limited paired training data, which may
lead to suboptimal parameter utilization.
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Fig.2. Overview of the proposed Flip Distribution Alignment Variational Autoen-
coder (FDA-VAE). The model consists of a shared encoder, two independent decoders,
and a flip distribution alignment (FDA) constraint layer. During training, a pair of
different phase MRI images is input to obtain self-reconstructed and cross-phase trans-
formed outputs. In the inference stage, only the target decoder is retained. The image
is encoded to obtain the latent distribution, and the mean vector is flipped before
decoding, generating the target-phase image from the flipped distribution.

To address these problems, we propose Flip Distribution Alignment VAE
(FDA-VAE). It is a lightweight feature-decoupled model for multi-phase CE MRI
synthesis. Our method uses a compact hybrid-architecture VAE as the generator
to reduce model parameters and improve efficiency. We introduce Flip Distribu-
tion Alignment (FDA) as a structured constraint on the latent space. Specifi-
cally, our method encodes input and target images as two latent distributions,
enforcing symmetry by setting opposite means and equal variances. This ensures
that shared features are preserved while maximizing independent components,
with transformation achieved via simple mean flipping. Additionally, we design
a Y-shaped bidirectional training strategy, enabling both self-reconstruction and
cross-phase synthesis through mean flipping. This enhances the interpretability
and stability of latent space modeling. Compared to existing methods, FDA-VAE
provides a structured and interpretable latent space representation, significantly
improving synthesis quality and parameter efficiency.

2 Method

Lightweight VAE vs Deep AE. Pre-trained VAE [I4] demonstrates excel-
lent data compression and decoding capabilities in high-resolution image syn-
thesis tasks. Recent approaches, such as Latent Diffusion (LDM) [24] and Visual
Autoregressive [25] (VAR), utilize pre-trained VAE or Vector Quantised-VAE
(VQ-VAE) [26] models. These models typically contain around 100M parame-
ters and are trained on 1.2 million natural images. They are first trained for
image self-reconstruction, providing a latent representation that facilitates sub-
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sequent feature generation. In medical image synthesis, MONAI’s LDM-based
approach [18] uses about 38,000 brain MRI slices to train a VAE with about 12M
parameters. In contrast, methods like ResVit [9] and I2I-Mamba [2] train cross-
modality mappings using only about 2,500 paired slices, yet rely on generators
exceeding 100M parameters. Although the self-reconstruction task is relatively
simple, cross-modality medical images typically exhibit strong structural corre-
lations. In terms of efficiency, existing deep AE generators tend to have excessive
parameters, resulting in inefficient utilization, particularly given the limited size
of medical datasets.

In this paper, we propose utilizing a shallow, lightweight VAE backbone di-
rectly as the generator, aiming to enhance image synthesis quality and model
interpretability through structured latent space modeling. As shown in Fig. [2]
we construct a hybrid-architecture VAE backbone, where both the encoder and
decoder consist of three residual convolutional blocks and one non-local atten-
tion block to capture local and global features. Compared to existing deep AE
generators, our backbone has fewer layers and a narrower model width. The
formula for the model is as follows:

u,0 = Encoder(z), z=p+ox*xe, €~N(0,1), & = Decoder(z) (1)

1
Lk ultback-Leibler (N (1, 02) [| N'(0,1)) = 5 (,u2 + 02 —log(c?) — 1) 2)

Given an input image x, the encoder outputs a mean vector y and a variance vec-
tor o. Latent features z are then sampled from this latent distribution N (u, 02),
and subsequently decoded into the target image & (Eq. Additionally, we em-
ploy the Kullback—Leibler (KL) divergence constraint (Eq to regularize the
encoded distributions towards a standard normal distribution.

Flip Distribution Alignment (FDA). The core idea of FDA-VAE is to build
a structured and efficient latent space representation. With a shared encoder-
decoder, we map the input and target images to separate latent distributions
and sample from them to synthesize the target image. However, solely relying
on KL divergence for regularization leads to two issues, as shown in Fig (a).
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Fig. 3. Convergence process of input and target distributions: (a) KL divergence only,
(b) KL divergence + FDA.



Flip Distribution Alignment VAE for Multi-Phase MRI Synthesis 5

In the early stages, the input (A) and target (B) distributions move toward
the standard normal distribution independently. Without explicit constraints,
they approach from random locations, leading to unpredictable relative posi-
tioning. This misalignment disrupts feature correspondence and increases diver-
gence, making feature transformation difficult and degrading synthesis quality.
As training progresses, the lack of alignment causes the distributions to collapse
onto each other, overemphasizing shared features while suppressing modality-
specific information, reducing independent feature distinctiveness. To address
these problems, we introduce an additional Flip Distribution Alignment (FDA)
constraint shown in Fig (b). FDA constrains the input and target distributions
to remain symmetric concerning the standard normal distribution throughout
training. Specifically, we enforce equal variances (6% = 0%) and opposite means

(ny = —pg) as show in Eq
Lrpa=||pa+mps|,+]0h -k, (3)

Combining KL divergence and FDA constraints ensures that both distributions
converge toward the standard normal distribution while maintaining structural
symmetry. This design ensures that the input and target features remain max-
imally separated during convergence while preserving alignment with the stan-
dard normal distribution. Additionally, the symmetric relative positioning allows
feature transformation to be efficiently performed via a simple mean-flipping op-
eration.

Y-shaped Bidirectional Training. To further enhance feature disentangle-
ment, we design a Y-shaped bidirectional training strategy, consisting of a shared
encoder that maps both modalities to symmetric latent distributions and two
phase-specific decoders to synthesize images. Given input phase x 4, the process
involves encoding, flipping, and decoding to obtain x 4, 4 and x 4_, g, while input
x g follows the same process for zg_,p and zg_, 4.

fta,04 = Encoder(z4), zama~N(pa,03), z2asp~N(—pa,03) (4

5:A_>A = DecoderA(zA_m), i‘A_>B = DecoderB(zA%B) (5)

For the self-reconstruction task, we use L1 loss for supervision Lge., for the
cross-phase synthesis task, we incorporate L1 loss L1yqns, GAN loss Lgan, and
perceptual loss L perce for co-supervision. The entire loss function FDA-VAE is
summarized as Lrpa_v AE:

EFDAfVAE :)\recﬁRec + ETran + )\gancGAN
+ )\pcrccﬁPcrcc + >\kl£KL + )\fdaEFDA

(6)

where Aree, Agan, Aperce and Ayqq, take the value of 1 x 1072, A\, takes the value
of 1 x 1077.



6 Kui et al.

3 Experiments

3.1 Experiment Setups

Dataset & Pre-process. FDA-VAE was trained on the LLD-MMRI 2023
dataset [I7], containing 498 patients across seven liver lesion types (four be-
nign, three malignant). We selected four T1 contrast-enhanced phases: Pre-
contrast (Pre), arterial (CA), venous (CV), and delayed (Delay), designing six
early-to-late phase synthesis tasks. Non-rigid registration was performed using
ANTSsPy [I] with the C+V phase as the reference. To ensure lesion-type consis-
tency, images were grouped by disease category and split 4:1 for training and
validation. Preprocessing included top 0.1% intensity clipping, normalization,
and resizing to 256 x256.

Evaluation Metrics. We evaluated our model using PSNR, SSIM [27] and
LPIPS [30] to assess image quality. Additionally, we analyzed model efficiency
in terms of parameter count and inference time per slice.

Training Details. All experiments were implemented in PyTorch v2.5.1 in con-
junction with the MONAI [22] framework. We employed the Adam optimizer
with an initial learning rate of le-4 and trained each model for 40 epochs on a
Linux workstation with 4 x NVIDIA RTX 4090 24G GPUs. It took about six
and a half hours to train FDA-VAE.

3.2 Ablation Study

We conduct an ablation study to assess the impact of each component. First, we
establish the lightweight VAE backbone as a baseline (Tab[I] VAE (backbone)).
While it achieves reasonable performance, its synthesis quality is constrained by
the reduced model capacity. Next, we introduce the FDA constraint to enforce
structured latent space alignment (Tab VAE (KL+FDA)). This variant applies
to mean flipping to transform the input distribution while using the target distri-
bution for self-reconstruction. As shown in the result, the FDA constrained im-
proves PSNR and SSIM while reducing LPIPS, demonstrating its effectiveness in
feature separation and alignment. Finally, our complete model, FDA-VAE, inte-
grates a bidirectional synthesis training strategy with two independent decoders.
This further enhances synthesis quality, achieving the highest PSNR, and SSIM
while maintaining the lowest LPIPS scores (Tab. These results confirm the
role of bidirectional training in stabilizing latent space modeling and improving
synthesis performance.

3.3 Comparison with state-of-the-art models.

Quantitative Analysis. We evaluate the synthesis performance of FDA-VAE
against Pix2Pix [12], ResVit [9], TransUnet [6], PTNet [31], and I12I-Mamba [2]
across six tasks. Tabl[I] presents the PSNR, SSIM, and LPIPS results, while
Tab 2] compares parameter size and inference time. Among existing methods,
ResVit [9] and TransUnet [6] achieve the best synthesis quality but require over
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Table 1. Overview of Evaluation Results (Bold indicates optimal, Underline indicates
sub-optimal, indicates optimal among the compared models, same as Table 2.)

Method/Task Pre—CA Pre—CV Pre—Delay CA—CV CA—Delay CV—Delay

PSNR(dB)}
Pix2Pix [12] 2479  23.74 23.60 24.73 24.56 27.27
ResVit [9] 24.06 24.33 25.88 25.41 26.63
TransUnet [6] 25.01 [24.74] (2474  [26.18]  [25.86] 26.35
PTNet [31] 24.85  23.68 24.03 25.38 24.68
12I-Mamba. [2] 2495  24.39 24.12 25.46 25.24 25.61
VAE (backbone) 2523  24.96 23.63 26.48 24.65 27.08
VAE (KL+FDA)  25.71  24.95  25.07  26.54 26.10 27.99
FDA-VAE(Ours) 25.89 24.98 2489  26.72  26.33 28.59
SSIM (%)
Pix2Pix [1] 80.41  68.23 77.14 78.50 78.95 84.56
ResVit [9] 8L.79]  76.32 78.99 79.20 81.90 84.98
TransUnet, [6] 81.22  [79.79 78.84 82.38]  [83.07 84.64
PTNet [31] 81.35  77.56 78.69 81.75 80.08 86.19
12I-Mamba [Z] 81.16  76.91 78.51 79.44 81.47 82.85
VAE (backbone) 7272 79.60 76.29 82.57 74.23 80.42
VAE (KL+FDA)  82.99 8010  81.32  83.07  82.99 86.41
FDA-VAE(Ours) 83.70 80.68  81.17  84.01  83.84 87.48
LPIPS|
Pix2Pix [17] 0.0854 0.0903  0.0914  0.0837  0.0851 0.0568
ResVit [9] 0.0776  [0.0774 [0.0626] [0.0682]  0.0534
TransUnet, [6] 0.0768 0.0761  0.0791  0.0637  0.0677 0.0632
PTNet [31] 0.0771 0.0787  0.0824  0.0635  0.0764  [0.0463
12I-Mamba, [Z] 0.0739 [0.0750] 0.0783  0.0646  0.0698 0.0632

VAE(backbone) 0.0799  0.0779 0.1064 0.0661 0.0818 0.0576
VAE (KL+FDA) 0.0720  0.0735 0.0716 0.0656 0.0667 0.0490
FDA-VAE(Ours) 0.0713 0.0729 0.0723 0.0611  0.0620 0.0465

Table 2. Generator Params & Inference Times.

Pix2Pix ResVit TransUnet PTNet [2I-Mamba Ours

Params (m) 51.89 117.72 100.45  26.83 100.64 11.78
Inference (secs/slice) 0.0019 0.0121 0.0109 0.0141 0.0071  0.0050

100M parameters and have inference times exceeding 0.01s per slice. In contrast,
our lightweight VAE backbone, with only 11.78M parameters, achieves compa-
rable synthesis quality. Further improvements are observed with FDA and Y-
shaped bidirectional training, significantly enhancing evaluation metrics. FDA-
VAE achieves the best overall performance across most tasks, demonstrating its
effectiveness in balancing synthesis quality and computational efficiency.
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Fig. 5. FDA feature decoupling in pixel level (a) & latent space level (b).

Qualitative Analysis. Figld] presents the visualization results and error heat
maps for six early-to-late phase synthesis tasks across all methods. Our method
achieves the lowest pixel-level error, as indicated by the error heat maps. Figlh|
illustrates feature decoupling at both the pixel level (a) and latent space level
(b). At the pixel level, our method effectively captures common structural and
contrast features (second column in a) while preserving phase-specific contrast
details (third column in a). In latent space, dimensionality reduction visual-
ization shows overlapping regions between input and target distributions, with
preserved non-overlapping areas, aligning with our FDA design objective.
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4 Conclusion

In this paper, we propose a lightweight feature-decoupled VAE framework called
FDA-VAE for multi-phase MRI synthesis. By incorporating the FDA constraint
and a Y-shaped bidirectional training strategy, FDA-VAE simultaneously re-
tains both common and independent features of the input and target images
at the latent feature level. Compared with state-of-the-art methods, FDA-VAE
achieves better synthesis quality while significantly reducing model parameters
and inference time. In future work, we aim to extend this framework to unpaired
data by leveraging unsupervised learning techniques for cross-phase synthesis.
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