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Abstract. Pituitary tumors often cause deformation or encapsulation
of adjacent vital structures. Anatomical structure segmentation can pro-
vide surgeons with early warnings of regions that pose surgical risks,
thereby enhancing the safety of pituitary surgery. However, pixel-level
annotated video stream datasets for pituitary surgeries are extremely
rare. To address this challenge, we introduce a new dataset for Pituitary
Anatomy Segmentation (PAS). PAS comprises 7,845 time-coherent im-
ages extracted from 120 videos. To mitigate class imbalance, we ap-
ply data augmentation techniques that simulate the presence of surgi-
cal instruments in the training data. One major challenge in pituitary
anatomy segmentation is the inconsistency in feature representation due
to occlusions, camera motion, and surgical bleeding. By incorporating
a Feature Fusion module, F2PASeg is proposed to refine anatomical
structure segmentation by leveraging both high-resolution image features
and deep semantic embeddings, enhancing robustness against intraoper-
ative variations. Experimental results demonstrate that F2PASeg con-
sistently segments critical anatomical structures in real time, providing
a reliable solution for intraoperative pituitary surgery planning. Code:
https://github.com/paulili08 /F2PASeg.

Keywords: Pitutary anatomy segmentation - Segment Anything Model
- Surgical Vision.

1 Introduction

Automatic segmentation of anatomical structures can identify dangerous areas,
surgical risks can be reduced in pituitary surgery [15,20, 21]. Especially during
the sella phase, anatomical structure segmentation is crucial due to the close
proximity of the anatomy [15]. As dangerous areas are difficult to segment, sur-
geons face challenges when performing endoscopic pituitary surgery. The sella,
where the pituitary tumor is located, can be accessed safely. However, the pres-
ence of internal carotid arteries and optic nerves beneath the smaller surround-
ing structures complicates the process of opening. The pituitary tumor leads to
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Fig. 1. Examples of the proposed PAS dataset including images and labels.

Table 1. Comparison with the existing datasets in pituitary anatomy segmentation.

Pituitary Anatomy Datasets | Image | Case | Class Task
Sarwin et al. [18] 19000 | 166 16 Detection
Staartjes et al. [19] 549 23 3 Detection
Adrito et al. [8] 635 64 10 | Segmentaion
Our PAS 7845 120 6 Segmentaion

compression, distortion, or encasement of the surrounding structures [2]|. Inac-
curate segmentation of essential anatomical structures can cause injury to the
patients [14, 15].

The availability of anatomical datasets for pituitary surgeries is extremely
limited. The scarcity of comprehensive and diverse datasets in pituitary surg-
eries poses a significant challenge during the sellar phase. Due to the consider-
able variations in anatomical structures among patients, collecting a large-scale
dataset is crucial. Fig. 1 illustrates the semantic segmentation of six anatomical
structures during the sellar phase of endoscopic pituitary surgery. As shown in
Table 1, our dataset consists of 7,845 images. Compared to [18] and [19], bound-
ing boxes/centroids annotated datasets produced for target detection task, our
dataset provides pixel-level mask annotations for semantic segmentation, which
is much more labor-intensive. Specifically, in the sellar phase, the number of
images in our dataset is 12 times greater than that of the dataset in [8]. More-
over, our dataset includes nearly twice as many cases as the dataset presented
in [8], with images in each case exhibiting a high degree of continuity, making
them suitable for video-based analysis. Additionally, our dataset captures the
significant variations in anatomical structures among patients and provides a
comprehensive representation of the diverse anatomical scenarios encountered
in pituitary surgeries.

A number of commonly used deep learning methods have been used for intra-
operative endoscopic segmentation [9,21,22]. U-Net [17] uses weakly supervised
learning of centroids to generate segmentation masks for each structure. In [§],
U-Net++ is employed for the semantic segmentation of the two most promi-
nent, largest, and frequently occurring structures (sella and clival recess) and for
centroid detection of the remaining eight less frequently occurring structures. Re-
cently, the field of semantic segmentation has undergone a significant shift with
the increasing focus on large-scale pre-trained models. Segment Anything Model
(SAM) [10], a leading Vision Transformer-based segmentation framework, has
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made remarkable progress in expanding the boundaries of segmentation in nat-
ural images. The subsequent update of Segment Anything Model 2 (SAM2) [16]
enables efficient video segmentation by transferring prompts with frame-to-frame
continuity. It has largely achieved the end-to-end efficient segmentation required
for intraoperative endoscopy, the current segmentation methods have not fully
investigated feature fusion. Thus, we purpose F2PASeg, a video-based segmenta-
tion model enhancing feature fusion for complex scenes. The main contributions
are summarized as follows:

1. We introduce the Pituitary Anatomy Segmentation (PAS) dataset, a large-
scale collection consisting of 7,845 pixel-level annotated images captured
during the sellar phase of endoscopic pituitary surgery. Our dataset PAS
contains the significant variations in anatomical structures among patients.

2. We propose an efficient architecture F2PASeg for pituitary anatomy seg-
mentation in endoscopic surgery. In our F2PASeg, a feature fusion module
enhances the mask decoder’s abilities to integrate image embeddings with
high-dimensional features from the image encoder to optimize feature inte-
gration.

3. To address imbalanced distributions of critical structures, we multiplex sur-
gical instrument annotations from the same dataset for data augmentation.
In particular, for the sparsely distributed categories of pituitary anatomy,
the original image frames are augmented with simulated surgical scenes that
involve the use of surgical instruments.

2 Methods

2.1 Overview

In this section, we build an end-to-end promptable structure F2PASeg and aug-
ment the dataset for pituitary tumor surgery scenarios. First, we integrate a fea-
ture fusion module in mask decoder. This module combines two residual blocks
with LoRa branch, which enhances the combinations between the features from
image encoder and the embedding from memory encoder. With LoRA, the model
better satisfies intraoperative real-time segmentation demands, achieving higher
FPS and reduced parameters. Second, we augment for samples with small distri-
butions by multiplexing the dataset to target less distributed samples, mitigating
the effect of imbalanced distributions.

2.2 F2PASeg backbone

The Segment Anything Model (SAM) [10] has demonstrated strong performance
in image segmentation tasks. However, its heavy reliance on prompts makes it
unsuitable for intraoperative endoscopic surgery scenarios. The later version,
SAM2 [16], extends image segmentation to the video domain and generates mask
predictions across an entire video by leveraging a newly developed memory mech-
anism. As illustrated in Fig. 2(a), the proposed F2PASeg incorporates three
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Fig. 2. The structure of our proposed F2PASeg model. (a) is the overall framework
that contains image encoder, prompt encoder, memory attention, mask decoder and
memory encoder. (b) is the modified mask decoder containing a feature fusion module
with two residual blocks in parallel with attention branch. The residual block has an
additional LoRA branch.

memory-centric architectural innovations: a memory encoder, memory bank,
and memory attention module. Specially, the memory bank implements a FIFO
queue system that stores both recently predicted frames and prompt frames,
capturing spatial feature maps and object pointers to maintain temporal seman-
tic information. To prevent cross-scene interference, we implement a prompt
partitioning mechanism that selectively stores only the two most recent prompt
frames alongside non-prompt predicted frames in the memory bank. The mem-
ory mechanism enables the model to effectively incorporate historical predictions
and supplementary prompts into the current frame’s feature processing.

Similarly, the mask decoder is modified to align with the new memory mech-
anism. The output of memory attention integrates high-resolution information
from the hierarchical image encoder using two transposed convolution blocks
as skip connections. However, the original SAM2 network directly adds high-
dimensional features to embeddings, which does not effectively leverage this
meta information. Prior studies [7,23] have shown that incorporating residual
blocks in the feature fusion process improves feature integration. Therefore, we
introduce residual computation when fusing features at strides 4 and 8 to en-
hance feature refinement.



Title Suppressed Due to Excessive Length 5

SAM

Original image Background

@

New sample

Image with instruments 0

Instrument instances

Fig. 3. Data augmentation pipeline.

Specifically, we take the high-resolution features Fpizn and the output from
memory attention after transposed convolution F ., as inputs to a residual
block (Fig. 2(b)). The residual fusion process is formulated as:

Fres =0 (H(Fhigh) + Fmem) (1)

where #(-) represents a sequence of operations applied to Fu;gn, including con-
volution, batch normalization, and ReLU activation o(-). Besides, we add a Low-
Rank Adaptation (LoRA) branch parallel to the main convolutional path:

F;es =f (Fres) + aB(AFres) (2)

where A € R™? and B € R?*" are the low-rank projection matrices in the
LoRA branch. r is the rank of the decomposition, typically much smaller than d
to keep computations efficient. « is a scaling factor that controls the strength of
the LoRA adaptation. The LoRA term B(AF,q) provides an additional feature
modulation pathway, allowing feature modulation without modifying the entire
model, making it lightweight and flexible and leading to better spatial-temporal
fusion.

The proposed model combines weighted focal loss, dice loss, mean-absolute-
error (MAE) loss and cross-entropy (CE) loss. The over all loss function is given
as follows:

Loss = Afocat L0SS focal + ADice L0SSpice + AMiarLossyiar + AceLossce (3)

where Atocal, ADice; AmaE, and Acg are the weights of each loss, respectively.
The values are set to 20 : 1 : 1: 1, respectively, according to [16].

2.3 Data Augmentation

In our dataset, there are three larger and more distinct structures presenting in
all videos: sella floor (SF), tuberculum sella (TS) and clival recess (CR). How-
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Fig. 4. Distribution of 6 anatomical structures in dataset.

ever, ICA prominence (IP), optic carotid recess (OCR), and optic prominence
(OP) are significantly scarcer. Despite their low prevalence, these structures are
crucial in pituitary tumor surgeries, as injuries to the internal carotid artery
(ICA) and optic nerve can result in hemorrhage or vision impairment [1,13].
As shown in Fig. 3, we implement a video reuse approach for annotating eight
surgical instruments that are frequently employed during the sellar phase, as de-
termined by expert neurosurgeons. The annotated instruments comprise: suction
tube, rongeur, cutting forceps, cup forceps, bipolar electrode, freer, and scissors.
We then select the cases containing ICA and OCR and superimpose surgical
instruments from the additional cases into the original images in chronological
order. This augmentation simulates realistic surgical scenarios, incorporating
occlusions and motion artifacts caused by instruments.

3 Experiment

3.1 Dataset Description

Our dataset comprises 7,845 images extracted from 120 videos of endoscopic
pituitary surgery during the sellar phase, with each frame having a resolution
of either 1920 x 1080 or 720 x 576 pixels. The anatomical structures in each
frame are categorized into six classes: sella floor (SF), tuberculum sella (TS),
ICA prominence (IP), clival recess (CR), optic carotid recess (OCR), and optic
prominence (OP). All images are annotated by specialized neurosurgeons, with
a small subset labeled by researchers and later reviewed by neurosurgeons for
accuracy. We first choose 100 cases and split them into 70 cases for training, 10
cases for validation, and 20 cases for testing, ensuring a balanced distribution for
model evaluation. Compared to previous works [8,19], our dataset offers more
training images and higher resolution, providing a more comprehensive repre-
sentation of anatomical variations. Fig. 4 illustrates the proportions of the six
anatomical structures across the 100 cases in the dataset. After data augmenta-
tion, the proportions of key structures increase significantly, with ICA reaching
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Table 2. Quantitative Comparison of different models

Dice
Model R S N S IP | CR | OCR| OP
Swin-UNet [3] |0.1872 | 0.2500 | 0.6360 | 0.3650 | 0.0114 | 0.4590 | 0.0121 | 0.0216
Trans-UNet [4] | 0.2192 | 0.2847 | 0.7247 | 0.4322 | 0.0222 | 0.4806 | 0.0002 | 0.0483
DeepLabV3+ [5]|0.2085 | 0.2434 | 0.7500 | 0.0511 | 0.0002 | 0.5599 | 0.0017 | 0.0958
LiVOS [11] | 0.4264 | 0.5057 | 0.8210 | 0.5851 | 0.2627 | 0.6752 | 0.1609 | 0.5293
SAM [10] | 0.6090 | 0.7188 | 0.8280 | 0.6468 | 0.5988 | 0.7169 | 0.7252 | 0.7970
SAM-Med 2D [6]] 0.6648 | 0.7798 | 0.8600 | 0.8403 | 0.6087 | 0.8076 | 0.7106 | 0.8514
MedSAM [12] 0.7086 | 0.8166 | 0.8641 | 0.8407 | 0.7368 | 0.8119 | 0.7792 | 0.8670
SAM2 [16] | 0.7681 | 0.8397 | 0.9043 | 0.8757 | 0.7301 | 0.8667 | 0.8049 | 0.8564
Ours 0.7701 | 0.8559 |0.9158|0.8917/ 0.7431 | 0.8826 | 0.8133 | 0.8887
Ours (+Aug) 0.7796/0.8635(0.9158| 0.8901 |0.7821|0.8860|0.8181|0.8888

40.83% and OCR 32.50%, greatly alleviating the imbalanced distribution of sam-
ples. As a result, the dataset expands to 9,331 images, with 88 cases for training
and 12 for validation, and 20 cases remain unchanged for testing.

3.2 Implementation Details

We fine-tune our model based on SAM2-t pretrained weight and setting and
reduce the number of prompt frames in the memory bank. The mask decoder
is frozen, while all other components remain trainable. Bounding box prompts
are provided for each anatomical structure every 10 frames. Input images are
processed at multiple scales, with the image encoder generating 1024-resolution
outputs. The implementation is based on Python 3.12.8 and PyTorch 2.5.1,
running on two NVIDIA A100 Tensor Core GPUs with CUDA 12.4. Training
is conducted for 40 epochs, and the best model is obtained using the AdamW
optimizer(f#; = 0.9, B2 = 0.999) with a base learning rate of 5.0 x 1076.

3.3 Results

To evaluate the effectiveness of our model, we train unprompted image mod-
els Swin-UNet [3], Trans-UNet [4], DeepLabV3+ [5], video segmentation model
LiVOS [11], fully-prompted model SAM-Med 2D [6], MedSAM [12] and the orig-
inal SAM [10] and SAM2 [16] and compare their performance. As shown in Ta-
ble 2, our F2PASeg achieves a mean Dice score of 85.59%, which is 1.62% higher
than the original SAM2 and 4.69% higher than the fully-prompted MedSAM.
Due to the complexity of the scene, the unprompted models perform poorly and
can only detect three more obvious structures. Fig. 5 provides a visual compar-
ison of segmentation results. F2PASeg demonstrates superior segmentation in
dynamically changing regions, particularly those affected by bleeding or instru-
ment occlusion during surgery. In particular, in the second and fourth columns
of Table 2, TS (top of frame) and CR (bottom of frame) are often affected by
camera pans. The feature fusion module improves segmentation continuity, en-
suring that predictions remain more stable and aligned with the prompt frames.
Moreover, F2PASeg achieves 28.57 FPS, which is 2.3 times higher than that
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Fig. 5. visualization result

Table 3. Ablation Studies Results

Feature Fusion Module|Data Augmentation| mDice | mIoU
- - 0.8397 | 0.7681

- v 0.8531 | 0.7697
v - 0.8559 | 0.7701
v v 0.8635|0.7796

of SAM-Med 2D, and basically meets the requirement of intraoperative real-
time segmentation. With the LoRA module, the number of training parameters
decreased from 39.0M to 34.8M.

Ablation Studies To verify the validity of our designed model and data aug-
mentation strategy, we conduct the ablabtion studies. The detailed results with
different configurations are listed in Table 3. These results indicate that our
model enhances segmentation performance by effectively modeling the relation-
ships between anatomical structures within the feature fusion module. Addition-
ally, the third row of Table 2 presents detailed results, revealing segmentation
accuracy improvements of 3.90% for ICA and 0.48% for OCR compared to the
previous model. Notably, F2PASeg reduces incorrect segmentation of surgical
instruments relative to the original model. Additionally, our data-augmented
model further enhances the segmentation accuracy of ICA, reinforcing the effi-
ciency of our spatial feature extraction method.

4 Conclusion

In this paper, we addressed pituitary anatomy segmentation during the sel-
lar phase of pituitary surgeries. We introduced a large-scale dataset, Pituitary
Anatomy Segmentation (PAS), comprising 7,845 high-resolution, temporally co-
herent images from 120 surgeries. Each image has been meticulously annotated
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by expert neurosurgeons. We proposed F2PASeg, an efficient architecture de-
signed to explicitly model relationships between anatomical structures in endo-
scopic surgery. Our method achieved a mean Dice score of 86.35%. The segmen-
tation accuracy for carotid arteries, a critical structure for surgical safety, was no-
tably enhanced. This improvement provides early warnings of high-risk regions,
assisting surgeons in their procedures. In addition, F2PASeg meets the real-time
processing requirements for video-based intraoperative applications. This en-
sures seamless integration into surgical workflows, providing live, high-accuracy
anatomical segmentation during endoscopic procedures. As future work, we plan
to explore adaptive temporal modeling to further enhance segmentation robust-
ness in long video sequences.
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