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Abstract. Recent adaptations of the powerful and promptable Seg-
ment Anything Model (SAM), pretrained on a large-scale dataset, have
shown promising results in medical image segmentation. However, exist-
ing methods fail to fully leverage the intermediate features from SAM’s
image encoder, limiting its adaptability. To address this, we introduce
MoE-SAM, a novel approach that enhances SAM by incorporating a
Mixture-of-Experts (MoE) during adaptation. Central to MoE-SAM is a
MoE-driven feature enhancing block, which uses learnable gating func-
tions and expert networks to select, refine, and fuse latent features from
multiple layers of SAM’s image encoder. By combining these features,
the model creates a more robust image embedding that captures both
low-level local and high-level global information. This comprehensive
embedding facilitates prompt embedding generation and mask decod-
ing, thereby enabling more effective self-prompting segmentation. Ex-
tensive evaluations across four benchmark medical image segmentation
tasks show that MoE-SAM outperforms both task-specialized models and
other SAM-based approaches, achieving state-of-the-art segmentation
accuracy. The code is available at: https://github.com/Asphyxiate-Rye/
E-SAM.
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1 Introduction

Medical image segmentation is crucial in modern healthcare, enabling precise
diagnosis, treatment planning, and disease monitoring. With the advent of deep
learning, significant progress has been made in this area, leading to ongoing
improvements in accuracy and efficiency. One key recent advancement is the
application of the Segment Anything Model (SAM) [14] to medical images, which
has emerged as a powerful approach. SAM operates by accepting a prompt (such
as a point or a bounding box) from the user and then segments the corresponding
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region in the image. Trained on a large-scale dataset of over a billion masks,
SAM shows remarkable generalization to unseen data [23,22], making it a strong
foundation model for tasks in fields with costly data acquisition and annotation,
such as medical imaging. However, since SAM’s training set primarily consists of
natural images, and given the gap between natural and medical images, applying
SAM to medical images is nontrivial and requires careful adaptation [29].

Existing approaches to adapting SAM for medical image segmentation gen-
erally fall into two categories: fine-tuning the model or modifying its architec-
ture. As a pioneering effort in fine-tuning, MedSAM [20] fine-tunes all SAM
parameters on a large-scale medical image dataset. While it achieves impres-
sive segmentation performance, this full fine-tuning approach incurs substantial
computational overhead. To mitigate this, several studies have employed LoRA
technology [12], which adjusts smaller, low-rank decompositions of the model’s
weight matrices during fine-tuning. For instance, SAMed [29] uses LoRA to fine-
tune SAM’s image encoder, while Feng et al. [8] apply LoRA to fine-tune SAM’s
mask decoder. Alternatively, adapting SAM by adding extra layers or networks
has also proven effective. A notable example is Medical SAM Adapter [28], which
enhances SAM by inserting adapter layers into the image encoder. SAMUS [17],
on the other hand, introduces a CNN-based encoder parallel to SAM’s image en-
coder and uses cross-encoder fusion to obtain a more robust image embedding.
DeSAM [9] modifies SAM’s mask decoder by introducing a prompt-relevant IoU
module and a prompt-decoupled mask module to extract multi-scale features.
While these methods show efficiency, we argue that they do not fully leverage the
feature embeddings from SAM’s image encoder. SAM employs a Vision Trans-
former (ViT) [6] as its image encoder to effectively capture semantically rich
representations. As highlighted in [6], the Mean Attention Distance across dif-
ferent ViT layers reveals substantial variation in “receptive fields”: lower layers
attend to fine-grained local details, while higher layers capture broader global
context. However, most existing SAM-based approaches [27,10] rely solely on the
final layer’s embedding or on four stages, thereby overlooking the fine-grained
semantics embedded in earlier layers. This neglect of the hierarchical semantic
representations within SAM’s encoder may limit its ability to achieve accurate
segmentation.

To address the limitation outlined above, we propose MoE-SAM, a novel
pipeline that integrates deep global and shallow local features from SAM’s image
encoder using Mixture-of-Experts (MoE) technology to enhance SAM’s adapta-
tion to medical image segmentation. At the core of MoE-SAM is a MoE-driven
feature enhancing block, which selects, refines, and fuses features from multi-
ple layers of SAM’s image encoder using learnable gating functions and expert
networks. The resulting features are then summed with SAM’s image encoder
output, generating a strengthened image embedding that facilitates mask decod-
ing. We also propose a lightweight prompt embedding generator that creates a
prompt embedding directly from the image embedding, offering a more efficient
self-prompted segmentation approach. Additionally, to avoid costly full-tuning of
SAM’s image encoder, we insert adapters into the encoder’s transformer blocks,
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Fig. 1: The pipeline of MoE-SAM. MoE-SAM features with a set of adapters
for efficient fine-tuning, (a) a MoE-driven Feature Enhancing Block (MoE-FEB)
and (b) a Lightweight Prompt Embedding Generator (LPEG).

updating only adapters while freezing the pretrained encoder during training.
This strategy strikes a balance between training complexity and the preserva-
tion of pre-learned knowledge. We validate our method on four public benchmark
medical image datasets, demonstrating its superiority over state-of-the-art task-
specific segmentation methods and SAM-based approaches. Our results also em-
phasize the crucial role of shallow encoder layers in segmentation performance,
highlighting the importance of leveraging multi-level features.

In summary, the main contributions of this work are as follows:

– We introduce MoE-SAM, a novel adaptation of the SAM architecture for
medical image segmentation. MoE-SAM leverages Mixture-of-Experts to en-
hance image embedding by selecting and integrating features from multiple
layers of SAM’s image encoder. It also includes a lightweight prompt em-
bedding generator that automatically learns a prompt embedding from the
enhanced image embedding, enabling more efficient self-prompting segmen-
tation. Additionally, MoE-SAM incorporates image encoder adapters for ef-
ficient fine-tuning.

– We conduct extensive experiments on four benchmark medical image datasets,
demonstrating that MoE-SAM outperforms the current state-of-the-art by
a large margin.

2 Method

The proposed method, MoE-SAM, adapts the pretrained vision foundation model
SAM for medical image segmentation. As shown in Fig. 1, MoE-SAM consists
of three main components: Image Encoder Adapters, a MoE-driven Feature En-
hancing Block, and a Lightweight Prompt Embedding Generator. The adapters
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are integrated into the transformer blocks of SAM’s image encoder for efficient
fine-tuning. The Feature Enhancing Block, which is central to MoE-SAM, uses
Mixture-of-Experts (MoE) to select, refine, and fuse features from multiple SAM
encoder layers. These features are then combined with the SAM encoder output
through simple addition, resulting in a more robust image embedding for prompt-
ing and mask decoding. The prompt embedding generator learns a prompt em-
bedding from the image embedding, enabling SAM to operate in a self-prompting
manner. During training, MoE-SAM freezes SAM’s pretrained image encoder
and fine-tunes the adapters, feature enhancing block, prompt embedding gen-
erator, and mask decoder, achieving a balance between reducing computational
overhead and preserving SAM’s pre-learned knowledge. The key components are
detailed below.

Image Encoder Adapters SAM’s image encoder, ViT-B, has around 86 mil-
lion parameters, making full parameter tuning highly resource-intensive. To ad-
dress this, we insert an adapter layer into each Transformer block [28] of the
image encoder, while keeping the encoder frozen and only tuning the adapters.
Specifically, the adapter is placed in the residual path of the Transformer block,
following the multi-head attention layer. Given input X, the adapter layer is
formulated as:

Adapter(X) = X+ σ (XWdown )Wup (1)

where σ(·) denotes the activation function, Wdown ∈ Rc×c1 and Wup ∈ Rc1×c

represent the down-projection and up-projection layers, respectively. Similar to
[3], we scale the embedding output from the adapter by a factor s before it
reaches the end of the residual path.

MoE-driven Feature Enhancing Block Features from different layers of
SAM’s image encoder capture varying levels of semantic information: lower layers
focus on local details, while higher layers capture more global context. However,
existing SAM-based methods typically rely solely on the features from the final
layer for mask decoding, which limits segmentation performance. To address this
limitation, we propose using MoE with Expert Choice Routing Mechanism [30]
to selectively combine features from multiple layers of the image encoder, gen-
erating a more robust image embedding that incorporates both local and global
information. MoE was originally designed to assign different experts to distinct
input samples, enabling more efficient and scalable models. In this study, we
adapt MoE for feature enhancement. Specifically, we construct a set of learnable
expert networks, with each expert paired with a learnable gating function. The
gating function selects intermediate features from SAM’s image encoder, which
are then passed to the corresponding expert for refinement by interacting with
features from other encoder layers. Given a group of features X ∈ Rn×d (n is
the number of features, which equals the number of encoder layers, and d is the
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feature dimensionality.), the gating function H(x) is formulated as follows:

H(X) = g(X, θ)T +Rnoise, (2)
I = TopK(H(x), k), (3)

SI = Softmax(H(X)[I]). (4)

Here, g(X, θ), parameterized by learnable weights θ, computes raw logits that
indicate the preference of the expert for each feature. As in [26,7], H(x) in-
cludes a noise term Rnoise to encourage exploration among experts and improve
the stability of MoE training. Next, we select the k features with the largest
H(x) values using the TopK operation, and normalize the selected values with
a softmax function. With the feature indices I, we retrieve a subset of X, de-
noted as XI , which forms the input for the corresponding expert. The expert is
implemented as a multilayer perceptron (MLP), with the following formulation:

X̂I = ReLU(XI ·W1) ·W2 (5)

Where W1 ∈ Rd×d′
and W2 ∈ Rd′×d are the parameters of the Feedforward

Neural Network. For features chosen by more than one expert, we obtain the
final representation by summing the results of all the corresponding experts:

Xfinal =
∑
I

SI · X̂I (6)

Here, SI represents the softmax value associated with the feature, weighting its
contribution to the final feature representation. With the MoE operation, we
obtain a set of enhanced features, each refined from an intermediate feature of
the original image encoder by incorporating information from features of other
layers. These enhanced features are further processed by a self-attention layer
followed by a convolution-based neck layer, resulting in a strong auxiliary image
embedding. The self-attention layer captures interactions across different input
regions, while the neck layer refines the features for better integration of local
and global information.

Lightweight Prompt Embedding Generator This module takes enhanced
image embeddings as input and generates prompt embeddings for prompt de-
coding. Specifically, it first applies Adaptive Average Pooling to extract global
contextual information, ensuring that the prompt embedding captures a com-
prehensive understanding of the image. Next, a two-layer bottleneck architec-
ture (Linear-GELU-Linear) is applied, which transforms the distribution of the
prompt embedding. This shift in representation moves from being image-centric
to prompt-centric, achieved through compression and reconstruction. The self-
prompting mechanism improves SAM’s flexibility and enables dynamic adapta-
tion to various image inputs.

Loss Function The overall training loss function is formulated as:

L = (1− λ)Lce + λLdice (7)
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where Lce and Ldice denote binary cross-entropy loss and dice loss, respectively
[21]. The weighting parameter λ controls the balance between these two losses
and is set to 0.8 in our experiments.

3 Expertments

3.1 Experimental Setup

Datasets We conduct experiments on four public medical datasets: MMWHS
(Multi-Modality Whole Heart Segmentation) [32,31], Synapse Multi-Organ CT
[15], BTCV (Beyond The Cranial Vault) [15], and ACDC (Automated Cardiac
Diagnosis Challenge) [1]. MMWHS consists of 20 3D cardiac CT scans, with 16
for training and 4 for testing. Synapse contains 18 training cases and 12 testing
cases, covering eight abdominal organs. BTCV provides 30 labeled CT scans (24
for training and 6 for testing) spanning 13 anatomical structures. ACDC includes
150 labeled cardiac MRI cases, focusing on the right ventricle, myocardium, and
left ventricle. We follow the official splits for each dataset.

Evaluation Metrics We use the widely accepted Dice Similarity Coefficient
(DSC) and Hausdorff Distance (HD) as evaluation metrics.

Implementation Details To facilitate training, we apply various data aug-
mentation techniques, including flipping, rotation, scaling, and intensity shifting.
All images, except those from the Synapse CT dataset, are resized to 256×256,
while Synapse CT images are resized to 224×224. The model is trained with a
batch size of 8 using the AdamW optimizer [19], with hyperparameters β1 = 0.9,
β2 = 0.999, and weight decay = 0.1. The learning rate is set to 0.0005, and
a warmup strategy is employed to ensure stable convergence during the early
stages. In the MoE configuration, we set the number of experts to 4 and the
top-k value to half of the total feature count.

3.2 Comparison with State-of-the-Art Methods

We compare the proposed MoE-SAM with state-of-the-art (SOTA) SAM adap-
tations for medical image segmentation across the 4 benchmark datasets. These
SAM-based methods are categorized into prompt-based and prompt-free adapta-
tions. For the prompt-based adaptations, we use a unified point sampled from the
ground-truth segmentation mask as the prompt. The results are listed in Table.
1, where it is evident that MoE-SAM outperforms all other SAM adaptations by
a significant margin in both DSC and HD scores. Additionally, we compare MoE-
SAM with state-of-the-art task-specialized models. The results, presented in the
upper half of Table. 1, show that MoE-SAM surpasses task-specialized models
in 6 out of the 8 measures, highlighting its highly competitive performance.
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Table 1: Comparison with state-of-the-art methods on Synapse CT, MMWHS,
BTCV, and ACDC.

Type Method Synapse CT MMWHS BTCV ACDC
DSC ↑ HD ↓ DSC ↑ HD ↓ DSC ↑ HD ↓ DSC ↑ HD ↓

Task-
special

nnU-Net [13] 79.89 28.52 87.55 17.72 72.67 15.72 91.54 1.086
TransUNet [2] 79.95 11.58 88.47 24.31 77.67 9.498 88.10 1.538
Swin-UNETR [11] 80.58 15.46 88.92 14.31 78.11 7.405 89.74 1.239
MedNeXt [24] 82.69 11.98 88.55 14.95 80.81 7.379 90.88 1.129
Swin-UMamba [18] 83.48 8.140 88.91 15.06 80.59 5.910 90.39 1.253

prompt
-based
SAM

SAM (1 pt) [14] 64.94 39.83 82.11 46.94 63.84 20.36 75.15 4.311
MedSAM (1 pt) [20] 72.45 20.43 84.53 55.94 69.14 18.49 82.11 3.720
MSA (1 pt) [28] 77.13 25.34 85.50 35.68 72.31 17.51 83.01 2.715
SAMUS (1 pt) [17,16] 70.55 43.65 83.98 30.74 65.12 24.58 69.66 5.559
DeSAM (1 pt) [9] 76.77 9.704 81.54 16.34 68.08 7.263 67.26 5.391
SAM-Med2D (1 pt) [4] 66.96 22.85 81.42 59.66 53.64 23.63 80.02 4.587

prompt
-free
SAM

SAMed [29] 80.42 10.77 87.05 25.32 71.23 9.010 88.83 1.429
AutoSAM [25] 81.61 10.17 88.71 12.99 75.77 7.693 72.05 3.248
H-SAM [5] 80.27 13.17 87.33 14.11 72.81 7.037 88.38 1.410
MoE-SAM (Ours) 84.71 8.756 89.38 13.67 76.82 5.637 91.89 1.064

3.3 Ablation Studies

We conduct extensive ablation experiments to examine the effectiveness of the
key components in MoE-SAM, including the MoE-driven Feature Enhancing
Block (MoE-FEB), and the Lightweight Prompt Embedding Generator (LPEG).
To validate the fine-tuning strategy based on image encoder adapters, we com-
pare it with the widely used LoRA technique. All experiments are conducted
on the MMWHS dataset, using the Dice measure for evaluation. For brevity,
we refer to the components as MoE-FEB and LPEG in the following sections.
The results are presented in Table 2, which clearly demonstrates that the full
MoE-SAM model achieves the best Dice score. The impact of each component
is discussed below.

MoE-FEB As shown in the last two rows of Table 2 (both the upper and
lower halves), applying the MoE-FEB leads to a significant performance in-
crease. Specifically, the model shows a 1.46% improvement (89.38% vs. 88.09%)
when fine-tuned using adapters, and a 1.53% improvement (88.76% vs. 87.42%)
when fine-tuned using LoRA. This highlights the crucial role of MoE-FEB in our
method. To further explore the reason behind the performance boost, we visu-
alize the features from different layers of SAM’s image encoder and the features
enhanced by MoE-FEB in Fig. 2. As shown in Fig. 2(a), the feature maps change
progressively across layers, with lower layers capturing local features (e.g., edges
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Table 2: Ablation study on the impact
of MoE-FEB, LPEG based on different
fine-tuning strategy.

MoE-
FEB

LP-
EG

Fine-tuning Strategy DSC
Adapter LoRA

✓ 87.24
✓ ✓ 88.38

✓ ✓ 88.09
✓ ✓ ✓ 89.38

✓ 87.05
✓ ✓ 88.59

✓ ✓ 87.42
✓ ✓ ✓ 88.76

Table 3: The application of MoE-FEB
to different SAM-based methods.

Method Fusion Strategy DSCAdd MoE-FEB

SAM 82.11
SAM ✓ 83.02
SAM ✓ 83.60

SAM-Med2D 81.42
SAM-Med2D ✓ 81.04
SAM-Med2D ✓ 81.96

SAMed 87.05
SAMed ✓ 87.90
SAMed ✓ 88.59

Fig. 2: Feature visualization. (a) Feature representations within the MoE-SAM
Image Encoder, with the layers progressing in the direction of the arrow. (b)
The first column shows the original input image. The second column presents
the baseline feature map from SAM after the neck module, without any fusion.
The third column presents the fused feature map, and the fourth column shows
the corresponding attention map based on the fused features.

and shapes) and higher layers capturing more abstract information. After pro-
cessing by MoE-FEB, the feature maps (shown in the third column of Fig. 2(b))
integrate both low-layer and high-layer information, represented by intensified
color. The corresponding attention maps demonstrate the same trend. This in-
dicates that MoE-FEB successfully integrates multi-layer features from SAM’s
image encoder, resulting in a stronger image embedding for subsequent prompt-
ing and mask decoding. We further tested the MoE-FEB with different baseline
models, including vanilla SAM, SAM-Med2D [20] and SAMed [29]. As shown
in Table 3, our MoE-SAM achieves much better Dice score comparing with the
feature fusion approach using multi-layer addition. This demonstrates the strong
generalization ability of MoE-FEB.

LPEG The results also highlight the importance of the LPEG, which boosts
the model’s performance from 88.38% to 89.38% with adapter-based fine-tuning,
and from 88.59% to 88.76% with LoRA-based fine-tuning.
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4 Conclusion

In this paper, we introduce MoE-SAM, a novel self-prompting adaptation of
SAM using Mixture-of-Experts (MoE) for medical image segmentation. The
method features a MoE-driven feature enhancing block, which effectively in-
tegrates features from multiple layers of SAM’s image encoder. The resulting
enhanced features are combined with the encoder’s output to create a more
robust image embedding, which significantly improves the subsequent prompt
embedding generation and mask decoding. We extensively evaluate MoE-SAM
on four public benchmark datasets, and the results demonstrate its superiority
over both state-of-the-art task-specialized and SAM-based approaches.
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