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Abstract. Artificial intelligence (AI) has shown great potential in med-
ical imaging, yet its adoption in veterinary medicine remains limited due
to data scarcity and anatomical complexity. This study introduces a novel
transformer-based edge representation learning network for verifying ro-
tated vertebral bodies in canine thoracic X-ray images. The proposed
method integrates a localization module to identify the spinous process,
a transformer encoder for global feature extraction using a self-attention
mechanism, and an edge encoder to enhance feature extraction of fine-
grained details, improving classification performance. Experimental re-
sults demonstrate that our method achieves superior accuracy, precision,
and recall, outperforming state-of-the-art (SOTA) methods with a clas-
sification accuracy of 0.7838. Furthermore, the ablation study confirms
that including the proposed encoders significantly impacts performance,
demonstrating their effectiveness in improving classification accuracy.
These findings highlight the importance of multi-scale feature extrac-
tion in veterinary imaging and suggest that EdgeANet can be a valuable
tool for AI-assisted X-ray verification in veterinary and human medical
applications.
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1 Introduction

Artificial intelligence (AI) is revolutionizing data analysis, enabling decision-
making and predictive capabilities [1,2]. In medicine, AI supports disease di-
agnosis, treatment planning, and prognosis prediction [3,4]. Integrating AI into
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veterinary imaging also has the potential to standardize diagnosis, reduce hu-
man error, and enhance clinical efficiency [5,6]. As pets are increasingly seen as
family members, there is a growing need for disease prevention, early diagnosis,
and effective treatments [7]. However, the adoption of AI in veterinary medicine,
similar to human healthcare, remains slow due to challenges such as the need
for high-quality labeled datasets, the complexity of anatomical and behavioral
variations, and a shortage of specialized AI practitioners familiar with veterinary
applications [8,9]. Despite these challenges, AI holds great potential to enhance
diagnostic accuracy, reduce workload for veterinarians, and improve overall pet
healthcare [10].

In veterinary medicine, imaging is essential since animal patients cannot com-
municate symptoms [11]. While computed tomography and magnetic resonance
imaging provide high-resolution insights, they require anesthesia, making them
costly and risky [12]. Consequently, radiography is more widely used due to
its affordability and accessibility, emphasizing the need to validate X-ray image
quality [13]. Due to its diagnostic importance, AI-driven X-ray analysis is an
active research area in veterinary medicine. Li et al. [14] developed a regressive
vision transformer model for canine cardiomegaly classification using vertebral
heart scale prediction, achieving state-of-the-art (SOTA) performance and im-
proving interpretability for clinicians. Banzato et al. [13] conducted the first
study assessing canine thoracic X-ray quality, highlighting the impact of techni-
cal errors like improper positioning on diagnostic reliability. AI-based methods
have also been explored for diagnosing conditions such as stifle joint diseases and
hip dysplasia [15,16,5]. Given the critical role of X-rays in veterinary diagnostics,
ensuring proper image acquisition is essential.

Medical imaging in veterinary medicine relies on structural analysis, where
fine-grained details such as bone contours, fractures, and subtle misalignments
are crucial for diagnosis [17,18]. Traditional deep learning models, especially
convolutional neural networks (CNN), primarily focus on learning high-level fea-
tures, often neglecting small-scale structural variations [19]. However, in radio-
graphic images, the presence of minor rotations, deformations, or anomalies in
vertebral structures can critically impact the accuracy of diagnosis [20]. In this
study, edge representation learning is critical in highlighting these structural
changes. Enhancing edge-based features enables a model to better distinguish
between normal and abnormal cases, improving classification accuracy.

Our contributions can be summarized as follows:

– We propose EdgeANet, a novel transformer-based edge representation learn-
ing method for identifying small-scale errors, such as rotated spinous pro-
cesses, in thoracic X-ray images. The proposed method determines whether
X-ray images are accurately captured by detecting small objects that indi-
cate common imaging errors, such as spinal rotation.

– We develop a module that enhances model performance in detecting minor
errors and improving X-ray verification and medical imaging applications.
This method has the potential to advance veterinary diagnostics and extend
to human medical imaging in the future.
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Fig. 1. Overall flow of the proposed network. The proposed network takes a raw image
as input and identifies the spinous process through the localization module shown in (b).
Subsequently, global and fine-grained features are extracted through the transformer
encoder in (c) and the edge encoder in (d). These features are then fused to produce
the final classification result.

2 Methods

Fig. 1. illustrates our proposed transformer-based edge representation learning
network for verifying thoracic X-ray images by detecting rotated spinous pro-
cesses. The network is composed of three components. The first component, the
localization module, identifies the spinous process within the vertebrae. The sec-
ond component, the transformer encoder, extracts global contextual features,
while the third component, the edge encoder, captures fine-grained edge details
to enhance structural analysis. Thoracic dorsoventral and ventrodorsal X-ray
images are first processed through the localization module, which detects the
spinous process. The identified region then extracts features through the trans-
former encoder and edge encoder, enabling the model to learn global and edge
representations. These extracted features are fused using summation to classify
the spinous process as normal or abnormal.

2.1 Localization module

In this study, the architecture of YOLOv10 [21] was employed for image lo-
calization, as illustrated in Fig. 1(b). The localization module enhances real-
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time object detection by improving efficiency and accuracy through a dual-label
assignment strategy. Integrating one-to-many and one-to-one matching during
training eliminates reliance on non-maximum suppression during inference. In
addition, a consistent matching metric aligns supervision objectives, reducing
redundancy and enhancing detection precision. These improvements enable end-
to-end deployment with minimal latency. Despite these advancements, the model
faced challenges identifying the spinous process due to overlapping structures and
low contrast in X-ray images. To address this, radiology specialists manually la-
beled based on standardized anatomical criteria, ensuring precise and clinically
relevant annotations.

2.2 Transformer encoder

To enhance the performance of spinous process identification, an architecture of
vision transformer (ViT) was integrated into the network [22]. The architecture
of ViT is illustrated in Fig. 1(c). The model uses self-attention mechanisms to
capture long-range dependencies within an image, making it particularly effec-
tive in distinguishing fine-grained features that convolution-based models may
overlook [23]. The ViT model was pre-trained on ImageNet and fine-tuned us-
ing the labeled dataset. The training process involved augmentations such as
rotation, flipping, and contrast adjustments to simulate variations encountered
in clinical settings. This method improved the model’s ability to discern subtle
differences in the spinous process region, even in challenging cases. Self-attention
computation includes a relative position bias B ∈ RM2×M2

for each head. The
self-attention mechanism of the transformer block is formulated as follows:

Attention(Q,K, V ) = SoftMax
(
QKT

√
d

+B

)
V (1)

where Q,K, V ∈ RM2×d are the query, key, and value matrices, d is the dimension
of the query and key, and M2 is the number of patches in the window.

2.3 Edge encoder

An edge feature extraction method was incorporated to refine the detection
and classification process. The architecture of the edge encoder is illustrated in
Fig. 1(d). Canny edge detection was applied during preprocessing to highlight
critical structures while suppressing background noise [24]. It was selected for
its robust Gaussian noise filtering and effective non-maximum suppression with
tunable thresholds, which enabled reliable edge enhancement on X-ray images
and contributed to performance gains. The lower and upper thresholds for Canny
edge detection were set to fixed intensity values of 40 and 75 respectively based
on the 0 to 255 grayscale pixel range. The extracted edge features were fused
with the transformer encoder outputs to construct a hybrid feature representa-
tion. This integration improved the model’s ability to identify spinous processes,
particularly under low contrast or anatomical overlap. An example output of the
Canny edge detection is shown in Fig. 2.
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Fig. 2. Example of Canny edge detection. This method can make the networks capture
local features of the spinous process.

3 Experiments

3.1 Dataset and experimental setup

Dataset. The abnormal and normal spinous processes are depicted in Fig. 3.
Radiographic images were obtained using appropriate exposure settings based
on abdominal thickness measurements, 200 to 300 mA, 60 to 80 kVp, and a focal
film distance of 100 cm. Thorax radiographic images were taken using a digital
radiographic system (Toshiba RotanodeTM, Tokyo, Japan). These images were
processed with a radiographic system (BLADE v1., Median International Co.,
Anyang, Republic of Korea).

X-ray images taken for disease diagnosis were filtered and used to select the
study subjects. Among the captured X-ray images, those in which the vertebral
bodies were rotated were collected and used as abnormal data. In contrast, non-
rotated images were collected as the control group and used as normal data. To
mitigate annotator bias and ensure objectivity in the absence of external datasets
for validation, labeling was conducted through rigorous multi-cross validation by
eight veterinarians, each with 1 to 5 years of clinical experience and 1 to 2 years
of specialization in veterinary radiology. The labeling criteria were based on
the Textbook of Veterinary Diagnostic Radiology by Donald Thrall, one of the
most authoritative references in the field [25]. To ensure consistency, only cases
confirmed by at least six of the eight veterinarians were included in the dataset.
The dataset included samples from various species, comprising 90 abnormal and
100 normal thoracic X-ray images. Although the sample size is limited, this
reflects the practical realities of veterinary clinical imaging.

Experimental setup. Our experiments were conducted on Ryzen 7 7800X3D
CPU and four RTX 4090 GPUs. The number of epochs for all methods was set to
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Fig. 3. Example of thoracic X-ray images. (a) presents a normal thoracic X-ray image
without spinal rotation, while (b) presents an abnormal thoracic X-ray image showing
rotated spinous processes.

100, with the Adam optimizer and a learning rate of 2e-4. The dataset was first
split into a 4:1 ratio for the train and test sets. Then, 4-fold cross-validation was
applied to the train set for model evaluation. Quantitative metrics, including
classification accuracy, precision, recall, F1-score, and confusion matrix, were
used to assess the model’s performance [26].

3.2 Comparison with SOTA Methods

The study compared the performance of various classification models, including
transformer-based architectures such as Swin Transformer [27], as well as CNN-
based models like ConvNeXt [28], ResNet [29], DenseNet [30], and EfficientNet
[31]. These models achieve SOTA performance or demonstrate performance close
to it on benchmark datasets such as ImageNet for image classification tasks.
Comparing our model with these architectures allows us to evaluate its efficiency
and effectiveness.

The left side of the table presents the highest performance achieved during
4-fold cross-validation. In contrast, the right side shows the test results of the
best-performing model from each fold, with the average and standard deviation
calculated accordingly. The experimental results demonstrate that EdgeANet
significantly outperforms other state-of-the-art methods in validation and test
performance across multiple evaluation metrics. It consistently achieves the high-
est accuracy across multiple folds, with values reaching up to 0.8684 in fold 3,
which is on par or superior to the best-performing models in individual folds.

EdgeANet achieves the highest average test accuracy of 0.7838, clearly out-
performing all competing models including EfficientNet. In addition, it registers
the highest precision of 0.6962, recall of 0.8623, and F1-score of 0.7813, demon-
strating superior accuracy and a balance between precision and recall. Unlike
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Table 1. Quantitative evaluation metrics of 4-fold cross-validation and test perfor-
mance. We highlight the best performance in bold.

Model Best validation performance Average test performance
Fold 1 Fold 2 Fold 3 Fold 4 Accuracy Precision Recall F1-score

Swin Transformer [27] 0.7632 0.7895 0.7632 0.7368 0.6411
(± 0.0336)

0.4183
(± 0.0221)

0.6232
(± 0.0140)

0.5691
(± 0.0055)

ResNet [29] 0.7368 0.7895 0.8421 0.8158 0.6619
(± 0.0107)

0.5747
(± 0.0808)

0.6911
(± 0.0308)

0.6405
(± 0.0367)

DenseNet [30] 0.8158 0.8684 0.8421 0.8421 0.6773
(± 0.0141)

0.5639
(± 0.0190)

0.7311
(± 0.0207)

0.6722
(± 0.0140)

EfficientNet [31] 0.7895 0.8684 0.8421 0.8421 0.6847
(± 0.0303)

0.5967
(± 0.0703)

0.7077
(± 0.0276)

0.6722
(± 0.0483)

ConvNeXt [28] 0.8158 0.8684 0.7368 0.7632 0.7114
(± 0.0466)

0.5845
(± 0.0690)

0.7748
(± 0.0506)

0.7078
(± 0.0478)

EdgeANet (Ours) 0.8158 0.8158 0.8684 0.8421 0.7838
(± 0.0310)

0.6962
(± 0.0276)

0.8623
(± 0.0258)

0.7813
(± 0.0271)

ConvNeXt or DenseNet, which achieve competitive results in specific folds but
fail to maintain consistency across test metrics, EdgeANet ensures stable and
superior performance across all evaluation criteria.

EdgeANet’s high recall score of 0.8623 suggests that it captures more rele-
vant instances than other models, making it particularly useful in applications
where missing key classifications could have significant consequences. These re-
sults establish EdgeANet as the leading model, highlighting its robustness and
practical applicability in real-world scenarios that demand high accuracy and
generalization.

Fig. 4. Confusion matrix of the four best-performing models.

Our experimental results are visualized through the confusion matrix pre-
sented in Fig. 4, which includes only the top four models with the highest test
accuracy. This study aims to accurately distinguish between normal and ab-
normal data by effectively extracting features from small structures, such as
the spinous process, in X-ray images for verification. EdgeANet demonstrates
outstanding performance in this task, having achieved a TP of over 0.7997, out-
performing EfficientNet, DenseNet, and ConvNeXt, which achieved a TP in the
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range of 0.6824 to 0.7331. Regarding the normal class, the proposed method
shows performance with an FP of 0.7695, while others showed lower reliability,
leading to a higher misclassification rate for normal cases.

The model uses a transformer encoder to extract global features and an
edge encoder to capture local structural details, allowing for a more comprehen-
sive representation of the X-ray images. By combining these feature extraction
techniques, the model enhances classification accuracy, particularly in detecting
subtle abnormalities that conventional methods may overlook.

Table 2. Ablation study of adapted encoders.

Model Transformer encoder Edge encoder Accuracy
Baseline ✗ ✗ 0.7368
w/o Edge encoder ✓ ✗ 0.7632
EdgeANet (Ours) ✓ ✓ 0.8158

3.3 Ablation study

In Table 2, we present an ablation study on different components of our network.
The results demonstrate that our methods enhance classification accuracy by ex-
tracting deep features through edge-based representation learning. The baseline
model achieved a classification accuracy of 0.7368 without any of the proposed
encoders. When the transformer encoder was incorporated, the performance im-
proved to 0.7632. Finally, with the addition of our edge encoder, the proposed
model achieved a classification accuracy of 0.8158.

4 Conclusion

This study proposed a transformer-based edge representation learning network
for classifying rotated vertebral bodies in canine thoracic X-ray images. By in-
tegrating a localization module, a transformer encoder, and an edge encoder,
our model effectively captures global and fine-grained features critical for ac-
curate classification. Comparative analysis against widely used deep learning
models demonstrated that our method achieves higher classification accuracy
and improved recall rates, reinforcing its robustness for veterinary applications.
The findings highlight the importance of multi-aspect feature extraction in en-
hancing the precision of diagnostic imaging models, particularly in cases where
traditional CNN-based architectures struggle with subtle anatomical variations.
Although the dataset size is limited due to the practical constraints of veteri-
nary clinical imaging, our results provide a foundation for future study. We plan
to expand the dataset using generative augmentation techniques such as genera-
tive adversarial networks to improve generalizability, adapt the network for other
anatomical regions, and explore real-world deployment in veterinary clinics. This
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study underscores the potential of AI-assisted imaging analysis in advancing vet-
erinary diagnostics and ensuring higher standards of pet healthcare.
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