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Abstract. Brain functional connectivity analysis plays a crucial role
in the computer-aided diagnosis of brain disorders. The brain organi-
zation is a heterogeneous structure with distinct functional divisions.
However, current heterogeneous algorithms often introduce excessive pa-
rameters while characterizing heterogeneous relationships, leading to re-
dundancy and overfitting. To address these issues, we propose the Het-
erogeneous Masked Attention-Guided Path Convolution (HM-AGPC) for
functional brain network analysis. The HM-AGPC introduces a hetero-
geneous masked attention generation mechanism that preserves valuable
heterogeneous relationships while minimizing redundant interactions and
highlighting crucial functional connections. Moreover, the framework in-
corporates an attention-guided path convolution strategy, which lever-
ages attention weights to guide the convolution kernel in focusing on the
most salient features and pathways. This approach improves model per-
formance without directly introducing extra parameters, thereby enhanc-
ing feature learning efficiency. We evaluate HM-AGPC on the ABIDE
dataset using ten-fold cross-validation, where it demonstrates superior
performance in disease diagnosis task compared to state-of-the-art meth-
ods. Additionally, the framework demonstrates high interpretability, mak-
ing it a promising tool for computer-aided diagnosis and the identification
of potential biomarkers.

Keywords: Heterogeneous mask · Attention-guided path convolution ·
Functional brain network analysis.

1 Introduction

The resting-state functional Magnetic Resonance Imaging (rs-fMRI) measures
blood oxygen level-dependent (BOLD) signals by capturing the content alter-
ation of oxyhemoglobin and deoxyhemoglobin. Reflecting the interactions be-
tween neuron clusters, rs-fMRI signals provide insights into brain’s activation



2 J. Xu et al.

Fig. 1. The overview of HM-AGPC. Step 1 (blue): Functional Brain Network Construc-
tion. Step 2 (orange): Masked Attention Generation and Path Convolution, including
our two key components: Heterogeneous Masked Attention Generation and Attention-
Guided Path Convolution. Step 3 (red): Readout and Prediction.

patterns [1]. It has been widely used for brain researches because of its advan-
tage of non-invasive and high-resolution [2–4]. Cognitive function arises from
intricate interactions among clusters of densely interconnected brain regions,
which form the complex community architecture of human brain networks [5].

The rs-fMRI based brain network can be mathematically considered as a
fully connected graph, where brain regions are nodes and functional interactions
are edges. With the development of deep learning, many graph models show sig-
nificant feature extraction capabilities in brain networks, especially graph neural
networks (GNN) [6, 7]. However, the region-wise interaction information of the
brain network is contained in the edges, which limits the direct application of the
node-based GNN. Then, several edge graph models have been proposed [8–10].
By using different convolution mechanisms to aggregate edge features, they have
shown improved performance in age estimation and disease diagnosis.

These algorithms all treat brain functional networks as homogeneous graphs,
whereas many studies have demonstrated that brain organization is a heteroge-
neous structure with distinct functional divisions [11,12]. Consequently, graph al-
gorithms based on heterogeneous brain networks have emerged [13,14]. Through
the use of heterogeneous networks, these methods can characterize diverse brain
connectivity relationships more accurately, achieving promising results in brain
disease analysis and brain development studies. However, these algorithms in-
troduce an excessive number of parameters during the process of heterogeneous
convolution, which can easily lead to severe overfitting in brain network analysis.

Transformer-based methods are increasingly being applied to the analysis
of functional brain networks [15–17]. Leveraging the attention mechanism [18],
these methods excel at capturing global information, thereby achieving impres-
sive performance. However, these approaches often lack detailed masking of the
attention matrices and overlook the heterogeneity of brain connectivity, which
limits their ability to minimize less significant interactions and to accurately
model functional brain networks.

To address these issues, we propose a Heterogeneous Masked Attention-
Guided Path Convolution (HM-AGPC) for functional brain network analysis.
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The proposed HM-AGPC incorporates a heterogeneous masked attention gen-
eration mechanism that can preserve valuable heterogeneous relationships and
emphasize crucial connections. Additionally, it includes an attention-guided path
convolution that enables the convolution kernels to capture salient features effec-
tively without directly introducing any additional parameters. The major con-
tributions of this work are highlighted below:

1 We propose a novel heterogeneous masking mechanism to characterize the
heterogeneity of functional brain networks. This mechanism selectively empha-
sizes valuable heterogeneous relationships while minimizing redundant interac-
tions, thereby enhancing the model’s ability to highlight crucial connections.

2 We adopt a concise attention-guided path convolution strategy. Without
directly introducing additional parameters, it can guide the graph path convolu-
tion to learn more effective convolution kernels, thereby enhancing the network’s
ability to capture key pathways and dynamic relationships among brain regions.

3 We conduct experiments on the ABIDE dataset to demonstrate the supe-
riority of our method over other state-of-the-art approaches. Furthermore, our
method exhibits strong interpretability, offering a novel approach for computer-
aided diagnosis of brain disorders and the identification of potential biomarkers.

2 Method

The proposed HM-AGPC framework is illustrated in Fig.1. Below, we first in-
troduce the step 1: Functional Brain Network Construction. Then, we introduce
two key modules in the step 2: Heterogeneous Masked Attention Generation and
Attention-Guided Path Convolution. Finally, we provide a concise description of
the step 3: Readout and Prediction.

2.1 Functional Brain Network Construction

To construct brain networks, a brain atlas is utilized to define a set of nodes,
each representing a Region of Interest (ROI). The rs-fMRI BOLD time series for
each ROI is computed by averaging the time series of all voxels within the ROI.
For each subject, we obtain N time series corresponding to N ROIs. A sliding
window approach is applied to segment time series into multiple overlapping
slices with a fixed stride. For each slice, pairwise Pearson’s correlation coefficients
are calculated between ROIs to construct a functional connectivity (FC) matrix.

The brain network can be represented as a fully connected graph, denoted
as G = (V, E), where V = {vi}Ni=1 ∈ RN represents the set of nodes (ROIs), and
E = {eij} ∈ RN×N represents edges which are the connections of nodes defined
by FC. Edges are initialized with D-dimensional edge features E ∈ RN×N×D.

2.2 Heterogeneous Masked Attention Generation

The interaction patterns among brain regions exhibit inherent differences. To
effectively capture these heterogeneous relations, we introduce a region-based
heterogeneous mask strategy. The process is shown in the yellow part of Fig.2.
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Fig. 2. The diagram of Heterogeneous Masked Attention Generation (yellow) and
Attention-Guided Path Convolution (green). The heterogeneous and homogeneous
pathways are marked with red and blue respectively.

Partition Embedding Concatenations. First, we map the edge features E
to node features V through a linear layer. Next, we adopt a pre-defined brain
partition to categorize N brain regions into T distinct groups. We generate
a special partition embedding Ht for each category and concatenate the node
feature Vi with its corresponding partition embeddings to obtain the extended
node features VH :

V = EwN , ViH = Concat(Vi, Ht), (1)

where wN ∈ RN×1 is the learnable parameter, V ∈ RN×D is the node feature,
Ht ∈ RDH×1 is the partition embedding of the tth group. Vi ∈ RD×1 is the
feature vector of node vi which is assigned to the same tth group according to
the previous partition scheme, i.e. Type(vi) = t, and ViH ∈ R(D+DH)×1 is the
extended feature of vi.

Hetero- and Homo- Attention Matrix Calculation. Given that the in-
teractions between heterogeneous nodes and homogeneous nodes are distinct,
from this step onward, we process heterogeneous and homogeneous parts sepa-
rately. Specifically, we calculate the hetero- and homo- attention matrix (Ahet
and Ahom) using the node features and extended node features respectively:

QH = norm(VHwQH), KH = norm(VHwKH), Ahet = QHKT
H/

√
D′ (2)

Q = norm(VwQ), K = norm(VwK), Ahom = QKT /
√
D (3)

where wQH , wKH ∈ RD′×D′
2 , wQ, wK ∈ RD×D

2 are the learnable parameters and
D′ = D +DH . The norm() is a normalization operator.
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Attention Matrices Masking. Subsequently, the heterogeneous components
are extracted from the Ahet and flattened into a base vector. The same process
is applied to the homogeneous components of Ahom.

Bhet = Flatten(Ahet), for Ahetij where Type(vi) ̸= Type(vj), (4)

Bhom = Flatten(Ahom), for Ahomij where Type(vi) = Type(vj), (5)

where Bhet ∈ RP×1 and Bhom ∈ R(N2−P )×1 are the base vectors and P is the
number of elements in the heterogeneous part. The base vector is passed through
a linear layer to derive a threshold λhet, which is used to compute the masked
hetero-attention matrix Amasked

het . The same procedure is applied to mask the
homo-attention matrix. The detailed process is as follows:

λhet = BhetwB1, λhom = BhomwB2, (6)

Amasked
het = Ahet⊙Sign(Ahet−λhet), Amasked

hom = Ahom⊙Sign(Ahom−λhom), (7)

where wB1 ∈ RP×1, wB2 ∈ R(N2−P )×1are the weight parameters and ⊙ denote
the Hadamard product. The Sign() function returns 1 for positive inputs and 0
otherwise. Then, we combine Amasked

het and Amasked
hom to get the final heterogeneous

masked attention matrix AHM:

AHM
ij =

{
Amasked

hetij , T ype(Vi) ̸= Type(Vj)

Amasked
homij

, T ype(Vi) = Type(Vj)
(8)

2.3 Attention-Guided Path Convolution

Brain regions communicate through both direct and indirect pathways. A path
P , can be seen as a sequence of n contiguous edges connecting a starting node
vi to a terminal node vj . A 2-hop path i− k − j is denoted as p2ikj = {eik,ekj}.
If i = k = j, p0ikj denotes a 0-hop path which is a self-loop. If i = k ̸= j or
i ̸= k = j, p1ikj denotes 1-hop path which is a direct connection. For simplicity,
we limit the maximum number of hops to 2. Thus, a set of paths between node
vi and vj is represented as Pij = {pikj |∀k ∈ N} = {eik, ekj |∀k ∈ N}.

We utilized the same path convolution as [10], which can be represented as:

E′
ij = Pikjwk = (Eik + Ekj)wk, (9)

where wk is the weight parameter and E′
ij is the learned edge feature. Addi-

tionally, we use masked attention AHM to guide the convolution kernel to learn
accurate features, which is shown in the green part of Fig.2 and is denoted as:

E′
ij =

(
AHM

ik Eik +AHM
kj Ekj

)
wk, (10)

where wk is the weight parameter and E′
ij is the learned edge feature. To mitigate

the over-smoothing issue in graph-based methods, we adopt an SE block after
path convolution. The final formulation can be represented as:

Enew = SE(AGPConv(E,AHM
ij )), (11)

where Enew is the output edge feature, and AGPConv() is the attention-guided
path convolution we just introduced.
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Table 1. Disease diagnosis results (mean±std) of comparison models and our method
on ABIDE dataset.(bold:best; underline:runner-up)

Model ACC (%) ↑ F1 (%) ↑ SEN (%) ↑ SPE (%) ↑
MLP 71.73± 3.78 71.39± 3.90 67.55± 8.81 74.49± 7.38
CNN 67.93± 2.67 67.57± 2.98 64.89± 13.13 70.40± 7.88
GCN 67.24± 2.07 66.94± 1.96 61.05± 4.91 72.79± 5.10

GBT 72.77± 3.42 72.43± 3.75 70.36± 8.34 74.20± 8.18
ALTER 73.34± 3.21 72.89± 3.52 71.40± 11.18 74.19± 10.03
BrainNetCNN 71.96± 3.65 71.80± 3.64 68.56± 8.12 74.55± 7.47
BC-GCN 74.16± 3.08 73.95± 2.96 72.73± 8.55 74.90± 9.30
PH-BTN 74.62± 3.81 74.58± 3.81 73.83± 6.01 75.22± 6.51

HM-AGPC (ours) 76.46 ± 3.16 76.38 ± 3.34 76.15 ± 8.39 76.54 ± 5.17

2.4 Readout and Prediction

We employ the same Edge Pooling (EP) and Node Pooling (NP) techniques
as [9]. The EP layers aggregate edge features into node embeddings, while the
NP layers transform node embeddings into a final graph representation G. Graph
representation G is then passed through a multi-layer perceptron (MLP) to gen-
erate the final prediction y. Specifically, during inference, the final prediction for
each subject is obtained by averaging y across all its slices.

3 Experiment

Data Processing and Experiment Setup. We validate our HM-AGPC
on the open-source dataset Autism Brain Imaging Data Exchange (ABIDE)
[19].We follow the approach in [20], selecting a subset of 871 higher-quality
samples (403ASD and 468HC) for the disease diagnosis task. We adopt AAL
atlas (N = 116 ROIs) [21] and the brain functional partition (frontal, parietal,
temporal, occipital, insular, cerebellum) as prior knowledge, where the number
of categories T = 6. For each scan, we adopt a sliding window of 30 points
and a stride of 20 points, cutting it into multiple slices to calculate pairwise
Pearson’s correlation of ROIs. We evaluate HM-AGPC and other related mod-
els (classic deep learning models - MLP, CNN and GCN; transformer-based
graph models - GBT [17] and ALTER [16]; edge-based graph models - Brain-
netCNN [9], BC-GCN [10] and PH-BTN [13]) through 10-fold cross-validation.
We utilize ADAM optimizer with the learning rate of 0.0001, batch size of 64,
and train models for 10 times with 60 epochs. Cross Entropy loss is used for
the disease diagnosis task. We initialize weights with a standard normal dis-
tribution and train models on a GeForce GTX3090 with 24GB. For evalua-
tion metrics, we choose classification accuracy (ACC), weighted F1-score (F1),
sensitivity (SEN) and specificity (SPE). For all baselines, we strictly follow
their experimental setup, fine-tuning hyperparameters on our data and reach-
ing the best performance to ensure fairness. Our code is now open-sourced at:
https://github.com/SCUT-Xinlab/HM-AGPC.

https://github.com/SCUT-Xinlab/HM-AGPC
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Table 2. Ablation study results (mean±std) of variants and our method on ABIDE
dataset. Hetero-Prior Ablation refers to heterogeneous prior ablation; Left-right means
dividing brain regions into left and right partitions; RandomX means randomly dividing
brain regions into X categories. (bold:best)

Model ACC (%) ↑ F1 (%) ↑ SEN (%) ↑ SPE (%) ↑
Module
Ablation

w/o Mask 74.62± 1.93 74.07± 2.58 72.66± 8.35 75.34± 7.86
w/o heterogeneity 75.20± 2.47 74.82± 3.02 72.58± 6.85 77.22± 5.51

Hetero-
Prior
Ablation

left-right 74.04± 3.16 73.81± 3.17 71.95± 9.61 75.80± 10.17
random4 74.26± 4.21 74.08± 4.34 73.59± 5.40 75.54± 6.98
random6 73.70± 3.30 73.51± 3.46 70.74± 6.67 75.82± 9.26
random8 74.50± 3.35 74.28± 4.07 66.65± 7.64 81.11 ± 5.67

Ours HM-AGPC 76.46 ± 3.16 76.38 ± 3.34 76.15 ± 8.39 76.54± 5.17

Performance Analysis. As shown in Table 1, we demonstrate the results of the
proposed HM-AGPC and related alternative methods on the ABIDE dataset. We
can see that the proposed HM-AGPC outperformed alternative models on the
disease diagnosis task with 76.46% ACC, 76.38% F1, 76.15% SEN and 76.54%
SPE. Edge-based methods (BC-GCN, PH-BTN and proposed HM-AGPC) sur-
pass node-based approaches (GBT and ALTER), indicating that the functional
brain network is more suitable for modeling using edge features. Furthermore,
the superior performance of HM-AGPC over BC-GCN and especially PH-BTN
(a heterogeneous path-based algorithm) demonstrates that the heterogeneous
masking mechanism provides reasonable positive guidance for path convolution,
optimizing the convolution kernel without directly introducing additional pa-
rameters, thereby yielding more accurate diagnostic results.

Ablation Study. We conduct two ablation experiments: module ablation and
heterogeneous prior ablation. In module ablation, we test two variants: w/o het-
erogeneity (pure homogeneous mask) and w/o Mask (pure attention guidance).
As demonstrated in Table 2, both variants show performance declines. Without
the precise characterization of heterogeneity for brain connectivity, the homoge-
neous mask fails to capture diverse brain region relationships, leading to a decline
in results. In the absence of mask, the attention matrix loses its ability to filter
out redundant interactions, thereby reducing its positive guiding effect on the
convolution kernel. These results indicate that a proper masking strategy can
effectively model the brain network while highlighting important connections,
which is crucial for the attention-guided mechanism.

In the heterogeneous prior ablation study, we test four models with different
priors: left-right, random4, random6, and random8. The left-right model divides
the brain regions into two major categories (left and right), while the randomX
models randomly partition the brain regions into X categories. Results in Table
2 show performance declines across all models, indicating that a well-designed
brain prior partition is vital for the heterogeneous attention mask. It is also no-
table that although random8 outperformed random6 and random4 in accuracy,
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Fig. 3. The visualization results by the back-tracking method. We visualize the top-30
important functional brain connections learned by our model for the disease diagnosis
task in ABIDE dataset.

the results for sensitivity and specificity were highly imbalanced. This suggests
that more categories do not necessarily lead to better performance.

Visualization. We operate the gradient back-tracking method [10] to visualize
the top-30 important brain functional connections learned by our model for the
disease diagnosis task in ABIDE dataset. From Fig.3, it can be observed that
the primary connections are concentrated among temporal lobe, occipital pole,
insula and cerebellum. In particular, the insula demonstrates strong importance,
which aligns with the findings in [22,23], suggesting the dysfunction of emotional
and social processing for ASD patients. There are also many crucial connections
in the occipital and temporal lobes, which may reflect limitations in visual and
auditory information integration functions in children with ASD [24–26]. Ad-
ditionally, connections in the cerebellar regions show strong significance, which
may be related to motor coordination and cognitive function regulation. Studies
in [27] and [28] have pointed out that abnormal connectivity patterns in the
cerebellum may affect motor control and executive functions in ASD patients.
In summary, these key connectivity patterns not only reveal potential neural
mechanisms of ASD but also demonstrate the advantages of our approach in
terms of interpretability, providing new insights for the search of biomarkers.

4 Conclusion

In this paper, we propose a novel Heterogeneous Masked Attention-Guided Path
Convolution (HM-AGPC) for functional brain network analysis. HM-AGPC in-
troduces a heterogeneous masked attention mechanism to emphasize valuable
heterogeneous relationships while minimizing redundant interactions, enhancing
robustness and interpretability. The framework also employs an attention-guided
path convolution strategy, which utilizes attention weights to guide convolution
kernels toward the most salient features and pathways. With the support of these
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two key mechanisms, HM-AGPC demonstrates exceptional performance in the
disease diagnosis task. Moreover, HM-AGPC provides a novel approach for ex-
ploring heterogeneous brain connectivity relationships, offering new insights for
brain disorder analysis and the discovery of related biomarkers.
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