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Abstract. Optical coherence tomography (OCT) enables detailed vi-
sualization and critical segmentation of retinal layers, which is essen-
tial for ophthalmological diagnosis. However, the development of auto-
matic segmentation methods has been hindered by limited annotated
datasets due to time-consuming manual labeling processes. Therefore,
we propose RetiDiff, a three-stage diffusion model-based framework to
synthesize realistic annotated OCT retinal images for enhancing seg-
mentation performance. By leveraging the diffusion model, RetiDiff can
synthesize diverse and realistic images guided by segmentation masks.
To improve synthesis quality and accuracy in pathological regions, we
introduce dynamic region masking (DRM), which selectively modifies
pathological areas during training. To align the continuous outputs from
mask sampling in the diffusion model with discrete segmentation labels,
we propose discrete mask clustering (DMC), which converts these out-
puts into discrete values consistent with the labels. Experimental results
show that RetiDiff effectively mitigates data scarcity by synthesizing re-
alistic and diverse annotated OCT retinal images, which substantially
enhance retinal layer segmentation performance. Compared to state-of-
the-art methods, RetiDiff-synthesized datasets improve the average Dice
score by 8.7% across all retinal layers, with a particularly notable in-
crease of up to 53.8% in pathological regions. The code and dataset are
publicly available at: https://github.com/MaybeRichard/RetiDiff.

Keywords: Retinal layer segmentation · Data augmentation · Diffusion
models · Medical image synthesis

1 Introduction

Optical coherence tomography (OCT) has become a fundamental imaging modal-
ity in ophthalmology, offering high-resolution visualization of retinal layers [9].
⋆ Corresponding author
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Accurate segmentation of these layers is critical for diagnosing and monitor-
ing ophthalmic diseases such as macular disorders and glaucoma, as it reveals
pathological changes through quantitative analysis [3,2]. However, the develop-
ment of automated segmentation methods is constrained by limited annotated
datasets [20,22,10]. This limitation stems from the labor-intensive process of
manual annotation, which requires time and expertise from ophthalmologists.
Thus, developing cost-effective methods to expand the annotated datasets has
become essential for advancing automated retinal analysis.

In recent years, generative models have emerged as a promising solution to
address data scarcity in medical imaging [23,15]. While early approaches using
generative adversarial networks (GANs) [21,19] showed potential for OCT image
synthesis, they suffered from instability and limited diversity. The advent of de-
noising diffusion probabilistic models (DDPM) [8] addressed many of these issues
with more stable training and improved image quality [6,12]. Wu et al. [22] pro-
posed a DDPM-based method that synthesizes retinal images from rough layer
sketches and uses knowledge adaptation with pseudo-labels to align synthetic
images with their labels. Similarly, Huang et al. [11] developed a transformer-
based DDPM for structural label generation paired with a mix-conditional la-
tent diffusion model. Despite these advances, existing DDPM-based methods
face two critical limitations: First, they lack fine-grained control over anatomi-
cal structures and pathological features during the generation process, leading to
limited accuracy in synthetic images. Second, limited annotated datasets restrict
the generative models’ representation capability, thereby affecting the quality of
synthesized images.

Therefore, we propose RetiDiff, a three-stage DDPM-based OCT retinal im-
age synthesis framework. We first pretrain a DDPM using a large amount of
unannotated datasets to learn the fundamental representation of retinal images.
Second, we train a separate DDPM using segmentation masks from annotated
datasets to synthesize diverse masks. Third, we fine-tune the pretrained model
with annotated datasets to synthesize high-quality OCT images with segmen-
tation masks as guidance. To address the conflict between generating diverse
pathological features and maintaining anatomical consistency in mask-guided
models, we propose dynamic region masking (DRM), which selectively masks
pathological regions during training to enhance generation of diverse patholog-
ical features. To address the misalignment between continuous outputs during
the mask sampling process and discrete segmentation labels, we present discrete
mask clustering (DMC), which converts these continuous outputs into discrete
labels via clustering. Through this framework, our method synthesizes diverse
and realistic annotated OCT retinal images, which enhances the performance of
automated segmentation, thereby improving diagnostic efficiency and accuracy.

2 Methodology

Diffusion Models. The DDPM we employed consists of two processes: the for-
ward process and the reverse process. Specifically, the forward process gradually
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adds Gaussian noise to the input image x0 over time step tn, creating a noisy
sequence xt =

√
αtx0 +

√
1− αtϵt, where ϵt ∈ N (0, In) represents the noise at

time step t, which is sampled from a standard normal distribution with mean 0
and covariance matrix In. The parameter αt controls the amount of noise added
at each time step. The reverse process learns to denoise by training a neural
network to predict the noise ϵθ(xt, t). Specifically, the reverse process is trained
by minimizing the loss function L = Ex0,t,ϵ

[
∥ϵ− ϵθ(xt, t)∥2

]
, where ϵθ(xt, t) is

the predicted noise at time step t. Through this process, the model is able to
synthesize high-quality images from random noise through iterative denoising
steps.
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Fig. 1. Overview of our proposed method. The method follows a three-stage approach:
(1) Pretraining on unannotated datasets with all-zero mask as condition, (2) Training
with annotated mask, and (3) Fine-tuning on the annotated datasets with gound truth
mask as condition. Two key methods are introduced: Dynamic Region Masking (DRM)
for handling pathological regions, and Discrete Mask Clustering (DMC) to convert
continuous mask outputs to discrete labels.

Overall Architecture. Fig.1 shows the overview of RetiDiff, which integrates
three stages: two conditional DDPM for image synthesis (stage 1 and stage
3) and an unconditional DDPM for mask generation (stage 2). In stage 1, a
large amount of unannotated datasets with all-zero mask as guidance is used to
pretrain a DDPM, which improves the models’ representation capability. In stage
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2, segmentation masks in annotated datasets are used to train a DDPM for mask
synthesis. When sampling masks from the trained model in stage 2, we apply
DMC to convert continuous diffusion outputs into discrete segmentation labels.
In stage 3, we fine-tune the pretrained model from stage 1 with annotated images
and masks. During this stage, we employ DRM which separates pathological
regions (mp) from annotated mask (m), applies random masking to pathological
region, and recombines them through a mask union operation before using the
processed mask as guidance for image synthesis.

2.1 Dynamic Region Masking (DRM)

DRM is a training strategy specifically designed to address challenges in mask-
guided diffusion models when dealing with pathological regions. It aims to miti-
gate the difficulties in synthesizing diverse yet anatomically accurate pathological
features, where high variability and complex morphologies often lead to inconsis-
tencies between synthesized images and guidance masks. Given a segmentation
mask m ∈ {0, ..., C − 1}H×W with C classes (background, retinal layers, and
pathological regions), DRM first identifies pathological regions using intensity
thresholds to separate pathological (mp) and retinal (mr) masks. We then apply
random ablation to mp via m

′

p = mp ⊗ α, where α ∈ [0, 1]H×W is a random
mask with elements following uniform(0,1) and probability p of being zero. The
final mask m

′
combines mr with m

′

p through union operation (m
′
= mr ⊕m

′

p),
integrating both retinal information and modified pathological regions. This pro-
cessed mask is concatenated with input xT during training. Our loss function is
defined as:

L = E(x0,m
′ ),t,ϵ

[∥∥∥ϵ− ϵθ(xt, t | m
′
)
∥∥∥2] (1)

Through this dynamic masking approach, RetiDiff learns to model the variable
characteristics of pathological features like IRF while maintaining their relation-
ship with surrounding tissues, enabling more realistic and diverse OCT image
generation.

2.2 Discrete Mask Clustering (DMC)

DMC serves as a post-processing method to reconcile the continuous-valued out-
puts of diffusion models with the discrete label requirements needed for segmen-
tation tasks. This mismatch often affects boundary definition and downstream
model performance. For implementation, we consider a mask m ∈ RH×W with
continuous pixel values mij . We flatten m into a set X = {x1, ..., xN} where
N = H×W , and apply K-means clustering with K = C, where C is the number
of segmentation classes. The algorithm minimizes the cost function:

J =

K∑
j=1

∑
xi∈Cj

∥xi − µj∥2 (2)
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where Cj is the set of pixels in cluster j, and µj is its centroid. After cluster-
ing convergence, we can obtain K cluster centers {µ1, ..., µK} and map them to
discrete label values via f(µj) = tj , where {t1, ..., tK} correspond to the seg-
mentation classes. The final discrete mask m̂ assigns each pixel the appropriate
label: m̂ = tc(i,j), where c(i, j) is the cluster index for pixel (i, j). This process
transforms the continuous-valued mask into exactly C discrete classes, ensuring
strict alignment with the original segmentation mask space. The resulting dis-
crete masks not only maintain the structural patterns learned by the diffusion
model but also guarantee format compatibility with both ground-truth annota-
tions and downstream segmentation algorithms.

3 Experiment

3.1 Dataset and Evaluation Metrics

Datasets. In the first stage, we used the OCT2017 dataset [13], which comprises
84,484 OCT images without segmentation masks for retinal layers. In the second
and third stage, we used the training set from the DUKE diabetic macular
edema (DME) dataset [5]. This dataset includes 110 OCT B-scan images with
corresponding retinal segmentation masks, split into 66 pairs for training, 22
pairs for validation, and 22 pairs for testing. For the downstream segmentation
task, we tested segmentation performance using the DUKE DME test set.

Evaluation Metrics. We adopted the fréchet inception distance (FID) and
learned perceptual image patch similarity (LPIPS) for generative quality assess-
ment, and Dice score (DSC) and pixel accuracy (PA) for segmentation perfor-
mance evaluation.

Model Implementation. All experiments were conducted on an NVIDIA RTX
4090 GPU. The model was trained in three stages: pretraining for 10,000 epochs
in stage 1, followed by 3,000 epochs for mask synthesis (stage 2) and 3,000 epochs
for image fine-tuning (stage 3). We used AdamW optimizer [14] with learning
rate 1e-5 and batch size 2. All images were normalized to [-1, 1] range and resized
to 480×480 pixels.

3.2 Synthesis Results and Ablation Study

We conducted qualitative and quantitative comparisons between RetiDiff and
other generative models, as well as ablation studies on each RetiDiff component.
As demonstrated in Fig. 2 (A), RetiDiff achieved better mask-guided image syn-
thesis with higher anatomical consistency, while both LDM [16] (DDPM with
autoencoder) and Retree [1] (DDPM with local self-attention mechanism and
multi-stage conditional concatenation) exhibited misalignment error in IRF and
other retinal regions, failing to maintain accurate correspondence with the guid-
ance masks. Table 2 compares the changes in segmentation performance after
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training with different datasets, unlike LDM, which relied on the variational
autoencoder to encode data into latent space. Retree used a more traditional
DDPM pipeline, achieving better FID and LPIPS scores. This improvement
likely stemmed from DDPM avoiding information loss during latent compres-
sion and more efficiently integrating conditional mask information directly in
pixel space. In ablation study, we evaluated the impact of each proposed com-
ponent in RetiDiff. With the gradual addition of different components, the the
quality of the synthesized images improved significantly. The pretraining process
was crucial in helping the model establish a fundamental understanding of OCT
image structures, improving FID by 34.59%. With the addition of DRM strategy,
the model’s ability to characterize IRF regions was enhanced, further improving
FID by 21.81%. Overall, RetiDiff outperformed existing methods in both FID
and LPIPS metrics, demonstrating the effectiveness and complementarity of our
proposed components in generating high-quality, anatomically consistent OCT
images.

Table 1. Quantitative comparison of state-of-the-art generative models and ablation
stydy of Retidiff. (�: Higher is better, �: Lower is better)

Method Pretrained DRM DMC FID � LPIPS �

Retree -/- -/- -/- 62.9871 0.4189
LDM -/- -/- -/- 84.6451 0.3225

RetiDiff

é é é 68.5206 0.3832
Ë é é 44.8165 0.4156
Ë Ë é 35.0441 0.4331
Ë Ë Ë 31.7257 0.4474

3.3 Segmentation Results

We further evaluated the synthetic dataset in retinal layer segmentation tasks.
In the experiments, we created three training data groups: (1) R/S (66/0), where
"R" stands for real and "S" stands for synthetic. This group comprises 66 pairs of
images, each consisting of a real annotated image from the DUKE DME training
set and its corresponding segmentation mask, with no synthetic images included.
(2) R/S (0/66): This group has 66 synthetic annotated images synthesized by
RetiDiff using masks from the DUKE DME training set as conditions. This
ensures a direct comparison with real annotated images. (3) R/S (0/1000): This
group contains 1000 synthetic annotated images synthesized by RetiDiff, where
the masks from the stage 2 sampling process are used as conditions. These three
groups of training data were used to train four segmentation models including
UNet [17], YNet [7], ReLayNet [18], and GDNet [4]. All models were tested using
the DUKE DME test set and results are shown in Fig. 2 (B) and Table 2.
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Fig. 2. Comparison of synthesis results from different methods (A), and comparison
of OCT retinal image segmentation results across different datasets and models (B).
White arrows indicate notable segmentation errors, with rectangular areas enlarged for
comparison. White dashed lines mark inaccurate regions in the synthesized images.

As shown in Fig. 2 (B), white arrows highlighted segmentation errors in the
first and second rows. The first row, trained on R/S (66/0), had the most errors,
primarily in the background region. The second row, trained on R/S (0/66),
showed errors mainly in the IRF regions. In the small IRF regions marked in
red and yellow, the first two rows significantly differ from the ground-truth. In
contrast, the third row trained on R/S (0/1000), not only eliminated the segmen-
tation errors in the background and retinal regions present in the first two rows,
but also significantly improved the segmentation accuracy in the IRF region.
These observations were supported by quantitative results in Table 1, which
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evaluated three key retinal layers: NFL-IPL (nerve fiber layer to inner plexiform
layer), ONL-ISM (outer nuclear layer to inner segment myocardium), and IRF,
using the DUKE DME test set. The R/S (66/0) and R/S (0/66) datasets gave
similar average metrics, with R/S (66/0) slightly better. This indicated that
real dataset had a small edge over synthetic ones when using the same masks,
showing the synthetic images were close but not fully equal to real dataset in seg-
mentation tasks. However, in the R/S (0/1000) dataset, the significant increase
in the quantity and diversity of annotated datasets led to a notable improvement
in the performance of multiple segmentation models. Notably, YNet showed the
largest gain compared to training on real data alone: the DSC for the IRF re-
gion rose by 53.8%, PA by 33.8%, and the average DSC and PA improved by
8.7% and 3.2%, respectively. Qualitative and quantitative experimental results
show that our method improves the segmentation accuracy of multiple models
by synthesizing a large number of different retinal OCT annotation samples.

Table 2. Quantitative comparison of segmentation methods across different training
datasets. (�: Higher is better)

Real/
Synthesis Model NFL-IPL ONL-ISM IRF Mean

DSC � PA � DSC� PA � DSC � PA � DSC � PA �

R/S
(66/0)

UNet 0.9048 0.8823 0.9026 0.9015 0.5825 0.5804 0.8221 0.8732
YNet 0.8769 0.8655 0.8909 0.8352 0.5622 0.5901 0.8038 0.8849

ReLayNet 0.9085 0.8915 0.9043 0.8985 0.5819 0.5910 0.8271 0.8754
GDNet 0.9011 0.8764 0.9042 0.8901 0.6410 0.6059 0.8391 0.8875

R/S
(0/66)

UNet 0.8964 0.8833 0.9013 0.9004 0.5859 0.5680 0.8145 0.8643
YNet 0.8976 0.8725 0.9023 0.8767 0.5903 0.6607 0.8118 0.8489

ReLayNet 0.8788 0.8789 0.8742 0.8731 0.5732 0.6953 0.8005 0.8489
GDNet 0.9051 0.8786 0.9005 0.8728 0.6238 0.6543 0.8234 0.8883

R/S
(0/1000)

UNet 0.9389 0.9262 0.9347 0.9383 0.7511 0.8408 0.8629 0.8974
YNet 0.9411 0.9259 0.9306 0.9130 0.8649 0.7901 0.8738 0.9135

ReLayNet 0.9365 0.9347 0.9343 0.9371 0.8010 0.8339 0.8663 0.8772
GDNet 0.9393 0.9215 0.9268 0.8911 0.7947 0.9215 0.8579 0.8991

4 Conclusions

This paper presents RetiDiff, a three-stage DDPM for synthesizing high-quality,
anatomically consistent annotated OCT retinal images. To address the challenge
of generating accurate annotated images with limited labeled data, we pretrain
the model on a large amount of unannotated datasets and incorporate the DRM
strategy along with the DMC post-processing method, which significantly im-
proving both image quality and downstream segmentation performance. Exper-
imental results demonstrate that our method outperforms existing approaches
in multiple metrics, with a remarkable 53.8% increase in Dice score for lesion re-
gions. Future work will extend this method to other pathological imaging modal-
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ities, providing cost-effective annotated datasets to support various diagnostic
applications.
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