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Abstract. Laparoscopic augmented reality (LAR) enables real-time vi-
sualization of internal organ anatomy, effectively reducing surgical risks.
Rigid point cloud registration aligns the spatial position of the preoper-
ative image point cloud with the intraoperative laparoscopic video point
cloud, playing a pivotal role in the virtual-real fusion visualization for
LAR. However, the limited field of view in laparoscopic surgery results
in only partial visibility of the organ. This leads to an incomplete video
point cloud that exhibits low overlap with the image point cloud, render-
ing registration highly susceptible to local optima. Moreover, the smooth
and texture-deficient organ surface makes popular superpoint matching
methods based on feature similarity ineffective. Inspired by the highly
consistent morphology of the video and image point clouds at organ bot-
tom edges, we propose an edge guidance (EG) mechanism to address
the challenge of sparse surface features in laparoscopic scenes. The EG
mechanism identifies edge points by calculating the standard deviation
of correlations among neighboring points, prioritizes edge alignment, and
subsequently guides the matching of other points. We leverage this mech-
anism to develop an edge-guided rigid point cloud registration network,
EG-Net. Compared with the state-of-the-art method PARE-Net, EG-Net
achieves at least a 7% improvement in accuracy and an 11% increase in
speed across three laparoscopic datasets: the public DePoLLLL dataset, a
pig liver surgery dataset, and a human liver surgery dataset. With its
high accuracy, fast speed, and strong generalization, EG-Net holds sig-
nificant potential for clinical applications in laparoscopic surgery. The
code is available at: https://github.com/FDC-WuWeb/EG-Net.
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1 Introduction

As a representative of minimally invasive surgery, laparoscopic surgery offers
benefits with minimal trauma, rapid recovery, and fewer complications. How-
ever, in surgeries involving internal organs, such as liver and kidney tumor re-
section, laparoscopic surgery faces limitations due to its inability to visualize
the internal structures of organs, resulting in high surgical risks. Laparoscopic
augmented reality (LAR) [] addresses this issue by reconstructing the organ’s
anatomical structures from preoperative images into a virtual 3D model. The
model is superimposed onto the intraoperative laparoscopic view to achieve real-
time internal organ visualization. The key technology of LAR is rigid registration
between the virtual 3D surface model (image point cloud) and the laparoscopic
video (video point cloud). However, the field of view is limited in laparoscopic
scenes, and only a portion of the organ is visible. Consequently, the video point
cloud is incomplete and is much smaller than the image point cloud (Fig. D(a)).
After registration, the overlap region is less than 30% of the image point cloud
(Fig. m(b)). This low-overlap characteristic, combined with the organ’s smooth
surface and lack of texture features, makes registration prone to falling into a
local optimum (Fig. 0(c)).

The traditional methods iterative closest point (ICP) [2] and global itera-
tive closest point (Go-ICP) [B] rely on the nearest neighbor search to force the
matching of closest points. Due to inaccuracies in forced correspondences, these
methods are prone to get stuck in local minima and suffer from time costs for
iteration. The deep learning method PCRNet [d] directly solves the transforma-
tion matrix, offering faster speed but with limited accuracy due to neglecting the
low-overlap scenes. To address this, Predator [8] introduces the concept of super-
point matching. Point clouds are downsampled into superpoints containing fea-
tures of local regions. Correspondences between superpoints are calculated based
on feature similarity to match the local overlap regions. Nevertheless, Predator
overlooks the geometric structure of local point clouds, resulting in matching
errors. P2PNet [f], based on kernel point convolution (KPConv) [7], encodes the
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Fig. 1. Illustration of low-overlap point clouds in a laparoscopic scene. The blue rep-
resents the video point cloud, and the yellow represents the image point cloud.
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geometric information from each point’s neighborhood to capture local geometric
structures. PARE-Net [R] incorporates rotation-invariant convolutions, improv-
ing the network’s robustness to point cloud rotations. However, in laparoscopic
scenes, organ surfaces are smooth and texture features are sparse, resulting in
extremely high feature similarity among local regions and superpoints. Exist-
ing superpoint matching methods struggle to accurately match high-similarity
superpoints, failing to guarantee globally optimal registration.

Inspired by the consistent morphology of the video and image point clouds
at the organ bottom edges, we propose an edge guidance (EG) mechanism to ad-
dress the challenge in laparoscopic scenes. EG mechanism identifies edge points
by calculating the standard deviation of correlations between neighboring points,
prioritizes edge points aligning, and subsequently guides the matching of non-
edge points. Based on this mechanism, we construct the EG-Net to align the
overlapping regions precisely. We compared EG-Net with state-of-the-art meth-
ods using three (one public and two private) datasets, i.e., the public laparo-
scopic porcine liver dataset DePoLL [d], the laparoscopic porcine liver dataset
from People’s Hospital of Suzhou High-tech District (referred to as Suzhou), and
the laparoscopic human liver surgery dataset from Fudan University Shanghai
Cancer Center (referred to as Fudan) to validate its performance and generaliz-
ability.

2 Method

2.1 EG-Net architecture

As shown in Fig. B, EG-Net consists of a point cloud feature extraction and
a point matching part. The source point cloud P and target point cloud @
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Fig. 2. The architecture of EG-Net for rigid low-overlap point cloud registration.
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are fed into KPConv to extract shallow topological features, such as neighbor
relationships. Then, four Res blocks and three Pooling blocks are alternately
stacked, gradually extracting deeper semantic features while downsampling point
clouds into superpoints. The Res block shown in the green box uses the Res path
to preserve shallow topological features while learning deeper semantic features.
The Pooling block shown in the yellow box is based on the Res block, with
max-pooling layers added to both paths to perform downsampling and feature
aggregation. The EG mechanism is applied before each Pooling block to identify
edge points and select their features, guiding the matching of high-similarity
superpoints in non-edge regions. The superpoints P and Q output by the last
Res block, along with their corresponding local features, I's and Fi5, are sent to
the upsampling layer and the superpoint matching block. An MLP layer follows
each upsamphng layer, and the final one outputs the upsampled point clouds
P' and Q' as well as their features F pr and Fr. Along with correspondences C
calculated by the superpoint matching block, they are fed into the dense point
matching block to generate correspondences C' for all points. Finally, singular
value decomposition (SVD) is used to solve the rigid transformation matrix
T = {R,t} from C. The overlap-aware circular loss Lo¢ [6] and point matching
loss Lp [i0], which have been explained in [6] and [R], are used to train the
EG-Net.

2.2 Point Cloud Edge Guidance Mechanism

To address the challenge of sparse texture features in laparoscopic scenes, we
propose an EG mechanism shown in the blue box of Fig. B. For a given candidate
point p; € P, K-nearest neighbors (KNN) is used to search for its neighbors
N(p;) = {p1,p2,---,px} Two 1*1 convolutions are applied to calculate the
features of p; and N(p;). By performing matrix multiplication and Softmax
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Fig. 3. The point cloud edge guidance (EG) mechanism (blue box), superpoint match-
ing (red box) and densepoint matching (cyan box) blocks.
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normalization (SM), correlation vector r; between p; and each of its neighbors
is obtained. r; and its standard deviation (Std) o is calculated as follows:
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(1)
where, p;;x) € N(pi), W - I represents the convolution and d is the feature
dimension. A lower o indicates the values in r; are similar, meaning the neighbors
of p; are evenly distributed, corresponding to the smooth non-edge region of the
point cloud. Conversely, a higher ¢ suggests significant differences in the values
of r;, meaning the neighbors of p; are unevenly distributed, corresponding to
the edge. Points with a o above a certain threshold (empirically set at 0.04) are
considered edge points. Finally, P and @) are traversed to identify all edge points
and select edge features. By increasing the weight of edge features in Fs and
FQ7 the superpoint matching block is trained to prioritize the precise matching
of edge superpoints, facilitating initial coarse localization of point clouds and
guiding the matching of highly similar non-edge regions.

As shown in the red box, the superpoint matching block is built upon a
Transformer-based self- and cross-attention structure [G]. This structure enables
interaction between two feature groups, enabling global matching. As shown in
the cyan box, for each superpoint correspondence C‘i, the dense point match-
ing block expands it to local dense points P* and Q* based on P and Ql,
subsequently sends them to optimal transport layer [i1], which calculates the
matching cost Z; of each pair and uses Sinkhorn (Skh) algorithm [I2] to gen-
erate a confidence matrix. The Top-k algorithm selects the highest-probability
correspondences, generating Cpqascn. This process is repeated for each pair of
superpoints, producing the final correspondences C for all points.

3 Experiments

DePoLL, Suzhou and Fudan used in this study contain 13, 30, and 10 cases, each
comprising a preoperative liver CT sequence and an intraoperative laparoscopic
video (Data will be made available on request). The liver is segmented by a se-
nior physician and reconstructed into a 3D model, from which surface points are
uniformly sampled to create the image point cloud. The video point cloud is gen-
erated from the video using MetaShape software. The physician performs rigid
registration to align two point clouds for each case. Point clouds are uniformly
resized to below 25mm, with a minimum point distance of 0.015mm to reduce
computational load. Data augmentation is applied to DePoLL Case 1(Fig. @),
generating 11,200 pairs split into a 9:1 training-validation set. The remaining 52
cases are used for testing.

EG-Net is trained using the Adam optimizer in a PyTorch 1.7.1 and CUDA
11.0 environment. The batch size, learning rate, and training epochs are set to 1,
le-4, and 80, respectively. Relative rotation error (RRE) measures the geodesic
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Fig. 4. Data augmentation flowchart.

distance between the predicted and ground truth rotation matrices. The relative
translation error (RTE) quantifies the Euclidean distance between the predicted
and ground truth translation vectors. The DePoLL dataset provides 15 liver
surface landmarks for calculating the target registration error (TRE). Lower
values of all three metrics indicate better performance.

4 Results and discussion

We perform comparative and ablation studies to evaluate the performance of
EG-Net. Accuracy is assessed using RRE, RTE, and TRE, while registration
speed is measured by time. The ablation method (EG-Net w/o EG) is excluded
from the metric rankings. Results are presented in Table M.

A comprehensive comparison of all methods reveals that superpoint matching
methods (Predator, etc.) outperform traditional (ICP, etc.) and direct-solving
(PCR-Net) methods. EG-Net achieves the highest accuracy and the second-
fastest registration speed across three datasets. Traditional methods perform
poorly due to their reliance on nearest neighbor search, leading to inaccurate
correspondences and transformations. The direct-solving method, PCR-Net, ne-
glects low-overlap scenes and mistakenly uses global features of non-overlapping
regions to calculate the transformation, resulting in registration errors. Although
PCR-Net is the fastest, the insufficient accuracy limits its practical applicability.

EG-Net outperforms the other superpoint matching methods, reducing RRE,
RTE, TRE, and Time by 12%, 14%, 7%, and 11% on the DePoLL dataset com-
pared with the second-best PARE-Net. This improvement stems from the pro-
posed EG mechanism, enabling EG-Net to match edge superpoints accurately,
facilitating initial coarse localization of point clouds and guiding the matching of
highly similar non-edge superpoints. When the EG mechanism is removed, the
EG-Net w/o EG shows a significant increase in RRE, RTE, and TRE by 80%,
117%, and 50% on the DePoLL dataset, demonstrating the effectiveness of it.



EG-Net for Rigid Registration of Laparoscopic Low-Overlap Point Clouds 7

Table 1. Results of the comparative and ablation studies. Bold represents the best,
underline indicates second best.

Methods ‘ RRE(deg)] RTE(mm)] TRE(mm)] Time(s)]
DePoLL
ICP (rpanI1002) 48.38+50.06 27.36+£3.11  41.71+28.57 0.1040.04
Go-ICP(rpamrisy | 45.58+54.37 22.15423.61 35.13+38.14  0.21+0.08
PCR-Net (arxivi19) 15.19+6.59 8.58+4.15 24.48+8.95 0.04+0.07
Predatorcvpra1) 8.68+£4.99 5.23£3.34 7.08+4.44 0.13£0.01
P2PNet(rpamr23) 6.20+3.51 3.73+£2.17 5.43+2.62 0.10+0.02
PARE-Net(scovoas) | 4784276 2.74+1.37  4.62+1.73  0.09+0.01
EG-Net (o) 4.19+1.75  2.3540.91  4.29+1.55  0.0840.02
EG-Net w/o EG 7.58£5.42 5.11+4.57 6.44+6.61 0.07£0.01
Suzhou
ICP (rpanr1002) 22.20438.99 13.17+23.24 - 0.0940.04
Go-ICP (Tpamris) 16.254+29.79  8.40+15.18 - 0.16+0.04
PCR-Net (arxiv'19) 46.05+10.38  28.81+5.40 - 0.03+0.05
Predatorcvpr-21) 9.94+8.65 6.30+£6.64 - 0.10+0.02
P2PNet(rpamras) 10.01£8.32 5.95£5.53 - 0.10£0.02
PARE-Netgcovioay | 9.114£18.44 5.66£13.13 - 0.09£0.01
EG-Net ours) 7.36+4.59 4.65+3.62 - 0.08£0.01
EG-Net w/o EG 9.58+8.82 6.27+6.09 - 0.07+0.01
Fudan
ICP (rpamri992) 34.15+£38.70  16.76+18.36 - 0.09+0.06
Go-ICP (rpamris) 62.14+58.37  30.80+26.25 - 0.1740.01
PCR-Net(arxivio) | 44.43+424.48 21.88+14.51 - 0.05+0.09
Predatorcvprrar) 54.06+£47.19 29.28+18.04 - 0.10£0.02
P2PNet(rpanras) | 33.094£19.49 19.54+12.73 - 0.1140.02
PARE-Net(gcovrasy | 10.73+£6.86  6.394+4.57 - 0.09+0.02
EG-Net 0use) 8.55+4.08 4.98+2.61 - 0.0840.01
EG-Net w/o EG 21.11+£12.65 11.56+6.67 - 0.07+0.01

EG-Net also outperforms other methods on Datasets Suzhou and Fudan,

showing exceptional generalization. This is particularly evident on the more
challenging human laparoscopic surgery dataset (Fudan), where Predator and
P2PNet struggle with local optima, resulting in significant performance declines.
Compared to PARE-Net, EG-Net further extends its advantage, reducing RRE
and RTE by 20% and 22%. These results highlight EG-Net’s remarkable suit-
ability for human data and its strong potential for applications in laparoscopic
surgery.

To visually compare the registration results, we randomly select one case from
each dataset for testing. The registration results and corresponding error distance
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Fig. 5. Visualization of rigid point cloud registration results. The first column shows
initial point clouds, while the last column displays the ground truth. Odd rows present
the results of each method, while even rows show the distance heatmaps between the
registered point clouds and the ground truth, along with the error range (in mm).

heatmaps relative to the ground truth are shown in Fig. B. In heatmaps, lighter
colors indicate lower error. Taking DePoLL Case 6 as an example, the similarity
between registration results and the ground truth progressively improves from
left to right across all methods. The distance heatmap colors gradually lighten
at the same time, indicating a step-wise accuracy improvement from traditional
methods to the direct-solving method and superpoint matching methods. The
distance heatmap of EG-Net (2(e)) shows the lightest overall color, with the
smallest maximum error distance of 4.13mm, indicating the highest accuracy.
Compared with 2(c) and 2(d), 2(e) shows a notably lighter color at the edges
(marked by red arrows). In contrast, 2(f) of the ablation method lacks this
advantage, demonstrating the effectiveness of the EG mechanism. Visualization
results on the other datasets reveal similar regularities, confirming that EG-Net
is also applicable to the human laparoscopic surgery data and highlighting its
strong generalization.

Although the datasets used in this study contain visible organ edges, situa-
tions where no true edge information is available may still arise in more complex
scenes or during certain short-term phases of surgical procedures, which could
lead to a failure of EG-Net’s edge guidance. Our future work will focus on reg-
istration under such conditions.
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5 Conclusion

We develop EG-Net, an edge-guided network for rigid registration of laparoscopic
low-overlap point clouds. This network incorporates the proposed edge guidance
mechanism to address the sparse texture features in laparoscopic low-overlap
scenes. We use three laparoscopic datasets to compare EG-Net with state-of-
the-art rigid point cloud registration methods. The results demonstrate EG-Net’s
superior performance, robust generalization, and potential for LAR applications.
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