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Abstract. Alzheimer’s disease (AD) is a complicated, heterogeneous
neurodegenerative disease associated with cognitive decline, behavioral
impairment, and brain atrophy. Detecting individualized pathological
changes from cognitive normal (CN) to AD is critical for targeted treat-
ment. Current existing methods face challenges, including biases to-
ward specific pathology profiles. To this end, we proposed a disentan-
gled generative model (DGM) to generate pseudo-healthy images and
disease-related residual maps that accurately detect universal patholog-
ical changes. The framework of DGM consists of three modules: pseudo-
healthy MRI synthesis, residual map synthesis, and input reconstruction
modules. We take into account both the healthiness and subject identity
to validate the biological validity of synthetic pseudo-healthy images. Our
experiments demonstrated the effectiveness of the DGM in reconstruct-
ing healthy brain anatomy, preserving subject identity, and highlighting
its direct application in anomaly pathological detection across the tran-
sitions from CN to MCI and from CN to AD. Code is available at https:
//github.com/zhonghuajiuzhou12138/DDGM_disease_stage_modell

Keywords: Alzheimer’s disease - Pathological changes - Disentangled
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1 Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative disease, character-
ized by memory impairment, executive dysfunction, and behavior changes |11[2].
Magnetic resonance imaging (MRI)-based biomarkers converging on structural
changes stand out as predominant hallmarks for AD [315]. Modeling AD-related
structural changes enables quantification of disease severity, thereby guiding clin-
ical management strategies such as treatment planning. However, high hetero-
geneity in the underlying neuropathological changes poses challenges to under-
standing the underlying mechanisms. [6,/7]. Therefore, it is essential to detect
the individual pathological changes for advancing precision medicine in AD.
Generative artificial intelligence (AI) has brought a novel perspective to
anomaly pathological detection by adeptly capturing the subtle changes of what
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is considered ‘normal’ in medical images [8H10]. The essence of generative AT lies
in normative representation learning, which uncovers characteristics of a healthy
population through training on large-scale neuroimaging datasets. Anomaly patho-
logical detection assesses how much patients deviate from the healthy distri-
bution [11H13]. The pseudo-healthy synthesis method synthesizes a pathology-
free image from a pathological image by image-to-image translation technique
[14-17]. It has been widely used in medical image segmentation [18], detec-
tion [19], and computer-aided diagnosis [20]. Previous studies have verified the
healthiness of synthetic images in the pseudo-healthy image synthesis task |14].
Nonetheless, pseudo-healthy synthesis is an ill-posed inverse problem as a patho-
logical image can synthesize many healthy-looking images. The medical images
were very similar between the different subjects, so the minor generation devia-
tion can seriously affect the histopathological features of the images and under-
mine their biological authenticity [19]. The healthiness and subject identity are
essential and indispensable for the pseudo-healthy synthesis method. However,
the above methods face challenges in ensuring both of these aspects. Disentan-
gled representation learning methods can preserve the characteristic of subject
identity while generalizing to data from different acquisitions and cohorts [21,22].

To address issues, we proposed a disentangled generative model (DGM) to
capture the AD individualized pathological changes. The proposed model can
generate pseudo-healthy images and disease residual/saliency maps. The disease
residual /saliency maps can also assist radiologists in interpreting the MRI images
and predicting the severity of the disease. We validated the biological validity
of synthetic pseudo-healthy images generated by DGM. Finally, we applied the
proposed DGM approach to the Alzheimer’s Disease Neuroimaging Initiative
(ADNTI) dataset to capture the pathological changes from cognitive normal (CN)
to AD and from CN to MCI.

2 Methodology

2.1 Problem formulation

Let X € P and Y € H denote the pathological domain and healthy domain,
respectively. In the traditional image-to-image translation task, the aim is to
learn a mapping P — H. Here, we are interested in generating pseudo-healthy
images from diseased images as inputs. In this paper, we assume that the MRI
Y of the disease state plus the residual map X, represents the pseudo-healthy
MRI X of the health state. Based on the above assumptions, this study aims to
generate pseudo-healthy images and residual maps from disease images to obtain
disease-related abnormalities and quantify the severity of AD. The underlying
generative factors include disease-related factors and those shared by both the
disease and CN states.
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2.2 Disentangled Generative Model(DGM)

As shown in Fig. 1, the proposed DGM consists of 1) pseudo-healthy MRI synthe-
sis module, 2) residual map synthesis module for detecting pathological changes,
and 3) input reconstruction module.
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Fig. 1. Schematic of the disentangled generative model (DGM). The pseudo-healthy
MRI synthesis module consists of a generator and a patch discriminator. This module
can generate pseudo-healthy images by an adversarial training strategy. The input
reconstruction module is a decoder to reconstruct the input images and facilitate the
training process. The residual map synthesis module is a generator for synthetic residual
maps.

Pseudo-healthy MRI Synthesis. The pseudo-healthy MRI synthesis con-
sists of a gerenator N and a patch discriminator D. The generator can gener-
ate pseudo-healthy images by an adversarial training strategy. The generator
employs an encoder-decoder mechanism. The encoder compresses an input im-
age into a normal latent representation C,,. Then, a decoder restores a pseudo-
healthy image. The network architecture of the generator comprises four down-
sampling convolution blocks (DCBs), two residual network blocks, and four up-
sampling convolution blocks (UCBs). The DCBs have two convolution layers and
each convolution layer is followed by instance normalization. The UCBs contain
two transposed convolution layers and each transposed convolution layer is fol-
lowed by Lay Normalization (LN). To preserve the details of synthetic images,
the encoder-decoder network has long skip connections between the DCBs and
UCBs. The patch discriminator D was used to distinguish the real normal MRI
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images from the pseudo-healthy ones. It can guarantee the orthogonality be-
tween normal features ), and abnormal features C,. The discriminator network
follows the PatchGAN structure to preserve the high-frequency information of
input images. The architecture of the discriminator has three DCBs and two
convolution layers.

Residual Map Synthesis. Residual map synthesis module R captures a
disease-related latent representation C,, and then produces voxel-level residual
maps. The network architecture of residual map synthesis follows the U-net
structure, which is similar to the generator of the pseudo-healthy MRI synthesis
module.

Input Reconstruction. The input reconstruction module E is used to
reconstruct the input images and facilitate the training process. We integrate
disease-related features and features shared by AD and CN to reconstruct the
input MRI.

2.3 Loss Function

The DGM was trained using a multi-component loss function, including adver-
sarial loss, reconstruction loss, penalty loss, residual loss and discriminator loss.

Adversarial Loss. Adversarial loss guarantees the healthiness of pseudo-
healthy images. The adversarial loss function is defined as follows:

LA = EXNPX(_ 1Og(l)real / fake (N(X))) (1)

Penalty Loss. Since the input of the DGM is a mixture of AD and CN,
we propose a penalty loss that forces the residual map X, to be zero when the
input is from CN. Penalty loss L is defined as:

0 X e AD
= { IRl XeCON @)

Reconstruction Loss. The reconstruction loss is defined as L1 distance to
capture the high-frequency information from input images. The reconstruction
loss is defined as follows:

Ly = ||E(Cp, Ca) = X[l (3)

Residual loss. Building upon the assumption presented in this study, we
define a loss function to supervise the residual map, which can accurately capture
brain structural changes in patients with AD.

Ly = |[N(X) = X = R(X)|1 (4)

where N(X) is the pseudo-healthy image generated by the generator N within
the pseudo-healthy MRI synthesis module. R(X) is the residual map by residual
map synthesis module R.
Hybrid Loss Function. The final objective function of the DGM is defined
by
L(N,R,E,Dj)= A (L1+ L2 + L3) + A2La (5)



Table 1. The quantitative results of the healthiness.

DGM

Method Convert  SSIM(CN)%  PSNR(CN) NCC
DCAE CN to MCI  47.97+1.10 23.95+0.25 0.024+0.13
CN to AD 48.50+1.06 18.91+0.23 0.01+0.12
CN to MCI  85.17+£3.81 23.95+£0.25 0.19+0.07
CycleGAN ?
CN to AD 89.07+2.13 1891+0.23 0.27+0.07
CN to MCI  39.41£0.88 24.25+£0.15 0.10+0.05
VA-GAN
CNto AD 38.23+1.35 19.17£0.11 0.16 +0.06
CN to MCI  86.74+1.46 24.55+0.74 0.18£0.05
HealthyGAN ?
CN to AD 87.93+1.88 28.80+0.67 0.25+0.07
DPM CN to MCI 88.454+1.69 24.68+0.63 0.21+£0.11
c
CN to AD 84.58+£0.15 24.48+£0.75 0.16 +0.09
. CN to MCI  87.45+1.53 24.08£0.46 0.17+0.06
DGM without DRL
CN to AD 87.54+1.06 27.82+0.55 0.234+0.04
. CN to MCI 88.85+0.93 33.76 +0.44 0.21 +0.07
DGM with DRL (ours)
CNto AD 88.42+1.05 28.21+0.52 0.28 +0.08

Discriminator Loss. For patch discriminator D optimization, the cross-
entropy loss is adopted as the discriminator loss:

Lp =Excpy [10g (1 = Dreat/take(N(X)))]

+ ]EXhEH [1Og (Dreal/fake(Xh))] (6)

3 Experiments and Results

3.1 Datasets and Data Preprocessing

Datasets. We used 1436 T1-weighted structural MRI data of 1265 subjects
from three distinct datasets: European DTI Study on Dementia (EDSD), in-
house dataset, and ADNI dataset. The EDSD dataset and in-housed dataset are
used to train the DGM, including 603 AD patients and 573 CN. Longitudinal
data (CN converted to MCI or AD) from the ADNI dataset was employed to
evaluate the biological validity of synthetic pseudo-healthy images.

Data preprocessing. The T1-weighted structural MRI data was using the
CAT12 toolbox with the following pipelines: (1) denoising, (2) Interpolation, (3)
affine preprocessing, (4) skull-stripping, (5) spatial normalization to Montreal
Neurological Institute. The normalization volumetric images were resliced into
96 x 96 x 96. We clipped the intensities of resliced images to [0, Vj.g995] and then
rescaled the intensities to the range [-1,1].

Implementation Details. The proposed method is implemented in Ten-
sorflow. The generator and discriminator were alternately trained until the loss
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Fig. 2. Quantitative evaluation of individual identification accuracy compared with
existing methods. * Accuracy denotes unreliable results when SSIM values fall below 0.5.
The larger the diagonal value in the SSIM matrices, the more accurate the individual
identification.

functions converged. During the training phase, we update the generator 100
iterations when the discriminator is updated once. The DGM is trained using 50
epochs with regularization weights A\; = 5, A\ = 1. We used the Adam optimizer
with the learning rates of the generator 1 x 10~ and discriminator 3 x 107°,
respectively. We decay the learning rate by 0.5 for every 25 epochs.

Evaluation Metrics. In this paper, we adopted a comprehensive measure-
ment of the biological validity of the generated pseudo-healthy images from four
different perspectives of indicators. We adopted the Peak Signal-to-Noise Ratio
(PSNR) to measure the quality of the generated images. Structure Similarity
Index Measure (SSIM) is used to measure the image similarity between the gen-
erated pseudo-healthy images and corresponding longitudinal images. We used
the NCC score to measure the image similarity between residual maps and longi-
tudinal changes from CN to MCI or AD. The individual identification accuracy
was employed to evaluate the consistency of subject identity. We calculated the
inter-subject and intra-subject SSIM values between pseudo-healthy and longi-
tudinal healthy images across the testing data. The SSIM value between the
subjects and themselves is greater than the SSIM value between the subjects,
the individual identification can be considered accurate.

3.2 Quantitative Results of Synthetic Images

Little work has been done to decompose the disease image into a pseudo-healthy
image and a residual map using a disentangled representation learning algo-
rithm. Some normative modeling and image-to-image translation methods can
generate pseudo-healthy images. We compared the proposed DGM method with
deep convolutional autoencoder (DCAE) , Cycle-GAN , visual attribution
GAN (VA-GAN) [25], healthy-GAN [16], and conditional diffusion probabilistic
model (¢cDPM) [26]. The residual map can be obtained by the difference between
the input image and the pseudo-healthy image. VA-GAN can directly generate
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the abnormal residual maps and implicitly get the pseudo-healthy images by
summing the input abnormal MRI and the generated residual maps.

The Validation of the Healthiness. We calculated the PSNR and SSIM
between pseudo-healthy images and longitudinal healthy images when patients’
images are fed into DGM. As shown in Table 1, the proposed DGM out-
performed the other comparative methods in assessing the quality and health
characteristics of synthetic pseudo-healthy images. The PSNRs of reconstruc-
tion in both the conversion from CN to MCI and from CN to AD are 33.76 +
0.044% and 28.2140.52%, respectively. The mean SSIM values of DGM between
pseudo-healthy images and longitudinal healthy images were 88.85 + 0.93% and
88.42+1.05% from CN to MCI and CN to AD. The CycleGAN and Healthy GAN
methods achieved good performances in measuring the healthiness of synthetic
pseudo-healthy images. The VA-GAN and DCAE suffer from a degree of spatial
warping and blurring.

The Validation of Subject Identity. Medical images from different sub-
jects often exhibit a high degree of similarity, and even minor generative devi-
ations can have a substantial impact on the biological validity of the generated
images. Consequently, it is important to preserve the subject identity for the
pseudo-healthy synthesis. We used the individual identification accuracy to eval-
uate the subject identity quantitatively. As shown in Fig. 2, the SSIM matrices
reflect the similarity between each subject’s pseudo-healthy image and all sub-
jects’ actual healthy images. It is observed that VA-GAN and DGM achieved
good individual identification accuracy compared with other comparison meth-
ods. However, the result of VA-GAN is unreliable between the pseudo-healthy
images and the actual healthy images when SSIM values fall below 0.5. DDPMs
suffer from identity inconsistency due to stochasticity, making them less suitable
for capturing subject-specific AD pathology. Other contrast methods did not
effectively synthesize realistic pseudo-healthy images with subject identity due
to poor individual identification accuracy.

The similarity between longitudinal changes and residual maps. We
used the NCC scores to quantify the similarity of generated residual maps and
longitudinal change maps. The mean NCC scores from CN to MCI and CN to
AD are 0.21 £0.07 and 0.28 £ 0.08, respectively (Table 1). It is well established
that diffuse atrophy occurs throughout the brain, accompanied by ventricular
enlargement with the progression of AD. Normal brain tissue typically exhibits
relatively high signal intensity in T1-weighted images. For AD patients, the signal
intensity decreases due to cortical atrophy and white matter degeneration. As
brain tissue atrophies, the contrast between the ventricles and surrounding brain
tissue becomes more pronounced in T'1-weighted images. As shown in Fig. 3, our
proposed method has good agreement with the actual longitudinal progression
change. The result demonstrated that the DGM method can accurately capture
individual pathological changes with the disease progression compared with other
competing methods.

Feature visualization in the latent space. The DGM can disentangle the
patient images into normal and abnormal features. For feature visualization, we
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Source Reference DCAE CycleGAN VAGAN HealthyGAN cDPM DGM (ours)
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Fig. 3. The examples of individual changes from CN to MCI and CN to AD in different
methods.

utilize the t-SNE algorithm to reduce the dimensionality of these features and
map them into 2D space. As shown in Fig. 4, the proposed DGM can clearly
distinguish normal features from abnormal features in both the conversion from
CN to MCI and from CN to AD.

Ablation study. To investigate the effect of disentangled representation
learning, we compared the quality of synthetic images and longitudinal data with
and without DRL methods. As the model without DRL contains only the pseudo-
healthy synthesis module in Fig. 1, we produce the residual maps through the
difference between the input AD images and the pseudo-healthy images. Table
1 shows that the performance of the disentangled representation learning model
outperformed that of the model without DRL. This highlights that the DRL
model is robust for different populations, acquisitions, and cohorts.

4 Conclusion

In this work, we proposed a disentangled generative framework designed to dis-
entangle the AD-specific features from the shared features by both AD and
CN. The proposed model can generate pseudo-healthy images and disease resid-
ual /saliency maps. The residual maps generated by AD-specific features can help
neurologists understand pathological changes with disease progression. This, in
turn, could be instrumental in generating novel hypotheses and advancing med-
ical research, ultimately contributing to the development of improved patient
care strategies.
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A t-SNE of latent features from CN to MCI B t-SNE of latent features from CN to AD
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Fig. 4. T-SNE results of latent features. The normal and abnormal features from the
pseudo-healthy synthesis and residual map modules were visualized using the t-SNE
algorithm.
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