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Abstract. Cerebrovascular diseases can occur suddenly and unpredictably,
making it crucial to identify high-risk individuals through screening to
prevent or mitigate its impact. However, digital subtraction angiogra-
phy (DSA), the current gold-standard, is difficult to apply to large-scale
screening or primary healthcare settings due to its high cost, complex
operation, and invasive nature. In contrast, Color Fundus Photogra-
phy (CFP) can reflect related cerebrovascular diseases through retinal
microvascular changes while maintaining low-cost and risk-free advan-
tages. Nevertheless, current CFP image-based methods for predicting
cerebrovascular disease mostly focus on pixel-level image features only,
ignoring the correlation between arteriovenous morphology, optic disc
structure and disease risk. To address this gap, we propose CVGB-Net,
a method that integrates a cross-view encoder to fuse high-level seman-
tic features, primarily capturing vascular abnormalities in the retinal
vasculature caused by cerebrovascular diseases, with low-level pixel fea-
tures extracted by the foundation model, RetFound, designed for ocular
tasks. The fused cross-view features for each sample are then processed
through a graph-based discriminator, which utilizes a graph adapter to
link disease-related features across the entire dataset. This approach fur-
ther enhances the model’s ability to differentiate between diseased and
healthy cases. To validate our approach, we present a tailored CFP-
Cerebrovascular diseases Screening (CCS) dataset with 2,338 expert-
diagnosed cases. Experimental results demonstrate the effectiveness of
our approach, highlighting its potential for cost-effective large-scale cere-
brovascular diseases screening. https://github.com/glodxy/CVGB_net

Keywords: Color Fundus Photography · Cerebrovascular diseases Screen-
ing· Graph Adapter.
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1 Introduction

Cerebrovascular diseases remain a leading cause of global mortality and chronic
disability, accounting for nearly 11% of worldwide deaths [4]. While conven-
tional neuroimaging modalities such as Digital Subtraction Angiography (DSA)
and Magnetic Resonance Angiography (MRA) are clinically effective for screen-
ing cerebrovascular diseases, their limitations, such as suboptimal detection effi-
ciency, high costs, and technical complexity, severely restrict their use in large-
scale screening programs and primary healthcare settings. Recent studies have
highlighted that retinal microvascular changes can serve as indicators of cere-
brovascular and cardiovascular diseases [16, 5], prompting the development of
methods to detect related diseases through retinal imaging.

Color Fundus Photography (CFP), as one of the retinal imaging modalities,
has gained significant attention for its low cost and risk-free nature, making it
suitable for screening programs. Several methods have explored combining CFP
images with other data modalities to predict cardiovascular disease [14, 7, 17].
Furthermore, Lin et al. [9] introduced a cross-laterality feature alignment pre-
training scheme to integrate information from CFP images of both eyes, thereby
improving cardiovascular disease prediction. However, these methods usually rely
on additional input data, which limits their applicability for large-scale screening.

In the field of cerebrovascular disease prediction, most methods focus on
extracting more detailed information from CFP images. For example, Lueng-
naruemitchai et al. [12] employed region selection and polar transformation,
similar to Polar-Net [10], to enhance feature extraction from CFP images. Other
methods integrate specialized modules to extract more intricate features from
CFP images [11, 1]. Additionally, Zhou et al. [19] pre-trained a foundation model
on a large-scale dataset to develop a more effective feature extractor. More re-
cently, Xia et al. introduced CoAtt-Net [18] to extract disease-related features at
multiple levels from CFP images for disease prediction. However, all these meth-
ods primarily focus on extracting low-level, pixel-based features, often overlook-
ing the intrinsic morphological relationships between blood vessels, optic discs,
and cerebrovascular disease. For instance, blurring of the optic disc (OD) margins
is commonly associated with intracranial hypertension [15], while arteriovenous
(AV) nicking and an increased arteriolar light reflex can suggest atherosclero-
sis [6], both of which are indicative of a higher risk of cerebrovascular disease.

Inspired by clinical observations, we propose CVGB-Net, comprising a Cross-
View Encoder (CVE) and a Graph Adapter (GA). The CVE extracts low-level
pixel features from CFP images and high-level semantic features from vessel
and optic disc masks, which are fused into a cross-view representation. The GA
then refines this representation to improve discrimination between healthy and
diseased cases, especially under data imbalance. To support validation, we in-
troduce the CFP-Cerebrovascular diseases Screening (CCS) dataset, containing
2,338 expert-diagnosed cases (2,205 healthy, 133 diseased). Our main contribu-
tions are summarized as follows: (1) the CCS dataset for cerebrovascular disease
screening with low-cost CFP images; (2) the CVE for integrating pixel- and
semantic-level features; and (3) the GA for enhanced category discrimination.
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Fig. 1: Overview of our framework, which includes a Cross-View Encoder (CVE)
and a Graph Adapter (GA). The CVE has two branches to extract low-level
pixel and high-level semantic features, fused by a Dual Feature Fusion (DFF)
module to produce cross-view classification features. The GA constructs sub-
graphs from all training samples’ features to extract representative category
feature nodes, which refine the input features via a graph neural network for
improved discrimination. The lock icon denotes model freezing during training.

2 Method

The overall framework is illustrated in Fig. 1. First, the input CFP images
are processed through the dual-branch architecture of the CVE, which captures
both low-level pixel features and high-level semantic features to obtain cross-
view classification feature. Next, the classification features are passed to the GA,
where they undergo a similarity computation with reference category features
to predict the most relevant clinical category.

2.1 Cross-view Encoder

Blurred OD margins in CFP images are often indicative of intracranial hyperten-
sion, while vascular features such as AV nicking and an increased arteriolar light
reflex are strong indicators of atherosclerosis. These factors are closely linked to
a higher risk of cerebrovascular diseases. To effectively integrate these key factors
into our method, we propose combining the anatomic structure semantic view
with the existing full-image pixel representation view to generate a cross-view
feature for more accurate disease-related information capture. To achieve this,
we introduce a novel Cross-view Encoder module, which incorporates a new
branch designed to extract semantic-level features fs from the segmented AV
and OD masks using a pre-trained semantic encoder. The other branch, using a
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fine-tuned RetFound [19], directly extracts pixel-level features fp from the input
CFP image.
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Fig. 2: The multi-stage training process of the Semantic Encoder involves two
stages. In stage 1, we first train a Metric Encoder using cross-entropy (CE) loss.
In stage 2, we align the features of the Semantic Encoder with those of the Metric
Encoder by applying both CLIP loss and CE loss.

To ensure the features extracted by the semantic encoder contain essen-
tial vascular morphological information, we employ a Variational Autoencoder
(VAE) as a metric encoder to assist in training the Semantic Encoder. Given
that metrics like Arteriolar-to-Venular Ratio (AVR), Central Retinal Arterio-
lar Equivalent (CRAE), and Central Retinal Venular Equivalent (CRVE) are
well-established retinal vascular indicators closely linked to cerebrovascular risk,
we use the trained metric encoder to map these metrics to the feature vector
fm. The features fs extracted by the Semantic Encoder are then aligned with
fm using CLIP loss. Additionally, we apply Cross-Entropy (CE) Loss to ensure
that the features fm and fs are distinct for healthy and diseased cases. The
multi-stage training process of the semantic encoder is illustrated in Fig. 2.

After training the RetFound and Semantic Encoder, we use the DFF module
to fuse the features extracted from both branches into a cross-view represen-
tation. Specifically, inspired by the Vision Transformer (ViT) [3], we introduce
a class token, tcls, which is concatenated with the features from both branches
and processed by efficient Mamba [2] to obtain the cross-view feature fc. This
cross-view feature fc is then passed through an MLP to generate the cross-view
classification features fcls for each input CFP image. More specifically, during
the training process of CVE, we first separately train the AV Segmentor and
the OD Segmentor. After that, we freeze their parameters and train the Seman-
tic Encoder as illustrated in Fig. 2. Meanwhile, we finetune RetFound on our
dataset. Finally, we train the DFF module and fine-tune the entire CVE using
a layer-wise learning rate decay strategy.

2.2 Graph Adapter

We introduce a new Graph Adapter module to enhance the model’s ability
to differentiate between healthy and diseased cases in cerebrovascular disease
screening. Following the approach of Li et al. [8], we construct two sub-graphs,
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{Gc, Gf}. The sub-graph Gc represents a class-specific sub-graph, composed of
learnable nodes (embeddings) for each class, while Gf represents a feature sub-
graph, constructed from the features extracted from all the training samples
within each class.

For Gc = {Nc, Ec}, we treat each learnable embedding as a node to construct
the node set Nc. In our study, we have two embeddings of size 1024, represent-
ing the “healthy” and “diseased” classes, receptively. For the feature sub-graph
Gf = {Nf , Ef}, we categorize all training samples into two groups (healthy and
diseased) based on their labels and compute the average classification features
for each group. These average features serve as the nodes in the node set Nf .
For both sub-graphs, we calculate the cosine similarity between all nodes to
determine the edge weights, constructing the edge sets Ec, Ef .

After constructing the sub-graphs, we introduce additional nodes into the
graph: the empty category features, fref (initialized with ones in our study),
and the classification features, fcls, extracted from the current batch. The edges
of the graph are then updated accordingly. These nodes are processed through a
Graph Convolutional Network (GCN) to aggregate information from both sub-
graphs, Gc and Gf , yielding the final reference category feature, f ′

ref , and the
adjusted classification feature, f ′

cls. A residual connection is applied afterward.
The workflow is expressed as follows:

f ′
ref = β · GCN(fref , Gc, Gf ) + (1− β) · fref ,
f ′
cls = β · GCN(fcls, Gc, Gf ) + (1− β) · fcls,

(1)

where β is 0.2 in our implementation to control the weights of residual connec-
tions. We then calculate the similarity between f ′

cls and f ′
ref for each category

and select the category with the highest similarity as the predicted label.

3 Experiment

3.1 Dataset

For this study, we constructed the new CCS dataset using color fundus pho-
tographs from 2205 healthy cases and 133 diseased cases collected in 2024 from
the same medical institution, where each case was diagnosed as cerebrovascular
disease when confirmed by angiography to fulfill any of the following condi-
tions: major cerebral artery narrowed by more than 50%, large vessel occlusion,
presence of aneurysm, presence of arteriovenous malformation and small-vessel
disease. Cases free of the above conditions were defined as healthy. The aver-
age age is 50.4 (healthy) and 68 (diseased); the male/female ratio is 1017/1198
(healthy) and 57/79 (diseased). Common comorbidities include hypertension and
diabetes. This study was approved by the institution ethics committee and in-
formed consent was waived as no identifiable private information is involved. All
color fundus images (original resolution: 2576 × 1934, see Fig. 3) are cropped
and resized to 512 × 512 for practical use. The dataset is split into training,
validation, and testing sets at a 3:1:1 ratio, comprising 1,323/441/441 healthy
and 79/26/26 diseased cases, respectively.
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Fig. 3: Representative fundus color photographs from healthy cases and diseased
cases. The three examples (from left to right) in the diseased cohort illustrate
blurred OD margins, AV nicking, and an increased arteriolar light reflex.

Table 1: Classification results of various methods on our CCS dataset.
Method Sensitivity ROC-AUC PR-AUC F1-score
Vision Transformer [3] 0.1667 0.6833 0.5803 0.2308
Vision Mamba [20] 0.1389 0.6742 0.5867 0.2020
Polar-Net [10] 0.4444 0.7967 0.6014 0.3265
CoAtt-Net [18] 0.1806 0.8237 0.6681 0.2708
RetFound [19] 0.4444 0.8296 0.6645 0.3048
Ours w/o CVE 0.5634 0.8422 0.6886 0.3493
Ours w/o GA 0.5278 0.8510 0.6929 0.3393
Ours 0.6389 0.8732 0.7088 0.3594

3.2 Implementation Details

We implement our proposed method using PyTorch under Ubuntu 20.04 with
four Nvidia RTX A6000 GPUs. For the Cross-View Encoder, we use the AdamW
optimizer with a learning rate of 5e-4 and train it for 100 epochs with a batch
size of 32. A layer-wise learning rate decay strategy is employed with a decay
rate of 0.65. For the graph adapter, we use a learning rate of 5e-5 and train it
for 50 epochs. The implementation and parameter settings for the comparison
methods are consistent with the descriptions provided in their respective papers.

3.3 Evaluation and Interpretability Assessment

We evaluate the model on the test set using Sensitivity, ROC-AUC, PR-AUC
and F1-score as performance metrics. For comparison, we benchmark our ap-
proach against two classical vision-domain methods (Vision Transformer [3], Vi-
sion Mamba [20]) and three methods specifically designed for retinal image-based
prediction tasks (Polar-Net [10], CoAtt-Net [18], RetFound [19]). The compara-
tive results are presented in Tab. 1. Our approach significantly outperforms the
other methods in Sensitivity and achieves substantial improvements over Ret-
Found [19] across all metrics, particularly in Sensitivity, ROC-AUC, PR-AUC,
and F1-score, with gains of 19.45%, 4.36%, 4.43%, and 5.46%, respectively. Ad-
ditionally, the results from the ablation experiments demonstrate that the in-
troduction of the CVE module significantly enhances the model’s performance
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ViT[3]

RetFound[19]

ViM[20] Polar-Net[10]

CoAtt-Net[18] Ours

Fig. 4: Left: Normalized confusion matrices of difference methods. Category 0
represents healthy, category 1 represents disease. Right: Diagram of ROC curves
for all methods.

across all metrics. The GA module helps balance the model’s focus on features
from different cases, slightly improving overall performance while notably in-
creasing the F1 score.

To further validate the classification efficacy of our method, we visualize the
confusion matrices for all comparative methods, as shown on the left side of
Fig. 4. Our method achieves reliable identification of diseased cases, correctly
classifying 63.89% of them, while other methods struggle to reliably detect dis-
eased cases due to dataset imbalance. The effectiveness is further illustrated with
the ROC curves for all compared methods on the right side of Fig. 4.

Additionally, we visualize the feature maps extracted by the pixel and se-
mantic branches, as shown in Fig. 5. Existing studies suggest that microvascular
dysfunction may increases the risk of cerebrovascular diseases [13]. From Fig. 5, it
is evident that the pixel branch primarily targets intricate blood vessel networks
in peripheral retinal regions, while the semantic branch concentrates on the optic
disc and surrounding vessels, which have anatomical features with established
clinical links to cerebrovascular disease.

Given the established link between a reduced AVR and an increased risk
of cerebrovascular diseases, we compare the distribution of values derived from
the CVE classification features with the distribution of values from the calcu-
lated AVR metrics. This comparison helps assess whether our method effectively
utilizes vascular information. As shown in Fig. 5, the two distributions are sim-
ilar, further supporting the idea that our method successfully retains relevant
vascular information for extracting classification features.

4 Conclusion

In this paper, we propose a framework for cost-effective cerebrovascular disease
screening based on fundus photography, which introduces a cross-view encoder
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Fig. 5: Schematic of interpretability. The upper half shows a comparison between
the categorized feature mapping values and the computed AVR values, while
the lower half presents a visualization comparing the pixel feature branch to the
semantic feature branch, where features from the OD and retinal arterial regions
are identified as key factors associated with cerebrovascular diseases.

module that accurately integrates disease-related information. Additionally, we
incorporate a graph adapter module to establish associations between classifica-
tion features and category-specific embeddings, thereby enhancing the model’s
ability to discriminate features across different categories. We conduct experi-
ments on our CCS dataset and perform an interpretability analysis of the re-
sults. Our method outperforms state-of-the-art approaches across multiple met-
rics, highlighting the potential of fundus photography for cerebrovascular disease
screening.
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