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Abstract. Accurately characterizing brain morphological changes throughout 
human lifespan is crucial for understanding brain development, aging, and disor-
ders. At the core of this endeavor lies cortical surface reconstruction (CSR), 
which underpins the computation of essential brain morphological features. 
However, existing CSR methods face two major limitations. First, cortical sur-
faces are typically reconstructed from 3D MRI data with high isotropic resolu-
tion, which is confined to research settings. In contrast, clinical MRI scans are 
collected with high in-plane but low through-plane resolution. Second, most CSR 
pipelines are designed either for adult or pediatric populations, restricting their 
applicability across the lifespan. To this end, we develop a deep learning frame-
work that harnesses MRI super-resolution (SR) as a bridging mechanism, lever-
aging the complementary information SR provides to jointly perform SR and 
CSR with a coarse-to-fine strategy. Specifically, we introduce a dual-decoder 
age-conditioned temporal attention network (DATAN) with a shared encoder, 
which simultaneously performs CSR and SR from thick-slice clinical MRI. By 
jointly training on the SR task, the shared encoder captures richer cortical fea-
tures, thereby enhancing CSR performance. Through a two-stage coarse-to-fine 
approach, incremental refinements in the SR output progressively restore fine-
scale details otherwise lost in low-resolution scans, ultimately improving CSR 
fidelity. Furthermore, to facilitate accurate CSR across the lifespan, we exploit 
the age-conditioning module of our framework and train our model on a large, 
diverse MRI dataset spanning ages from 1 to 100 years. Experimental results 
demonstrate that our method, despite requiring only thick-slice clinical MRI 
scans, achieves consistently improved CSR performance across the entire human 
lifespan. 
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1 Introduction 

Brain development is a lifelong, intricate process that can be characterized by morpho-
logical changes in the cerebral cortex, including variations in cortical thickness, sulcal 
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depth, surface area, etc. [1-4]. Reconstructing cortical surfaces from brain magnetic 
resonance imaging (MRI) scans is essential for the quantitative analysis of these mor-
phological features and their changes over time. Existing large-scale neuroimaging da-
tasets not only offer new opportunities to better understand cortical development over 
the entire human lifespan but also demand fast and robust cortical surface reconstruc-
tion (CSR) method that can generalize well across different age groups and acquisition 
protocols. Available neuroimaging pipelines, such as FreeSurfer [5], BrainSuite [6], the 
dHCP pipeline [7], the HCP pipeline [8], and iBEAT v2.0 [9], have achieved great 
success in cortical surface reconstruction within the research community. However, 
these pipelines typically involve multiple processing steps, which incur high computa-
tional costs and lengthy processing times, thereby limiting scalability to the rapidly 
growing volume of neuroimaging data. 

Recent CSR methods based on geometric deep learning [10-20] have significantly 
reduced processing time from several hours to a few seconds for each subject, leverag-
ing either implicit surface representations [10-12] or explicit mesh deformations [14-
20]. However, two major challenges still remain: a) most of these methods are trained 
on datasets from specific age groups and are thus unlikely to generalize well to unseen 
data across the human lifespan; b) they generally rely on high-resolution (HR) 3D iso-
tropic MRI scans, making them inapplicable for clinical MRI scans, which are gener-
ally acquired at low-resolution with large slice thickness.  

To address these limitations, we propose a novel approach for lifespan CSR using 
low-resolution (LR) thick-slice brain MRIs commonly encountered in clinical practice. 
Our framework introduces a dual-decoder age-conditioned temporal attention network 
(DATAN) with a shared encoder. In particular, MRI super-resolution (SR) is treated as 
a bridging mechanism, which enables DATAN to learn complementary information 
relevant to both SR and CSR. Unlike CorticalFlow++ [16], which refines surface re-
construction through a cascade of deformation blocks, our two-stage design jointly per-
forms SR and CSR, where the output SR image of the first stage is used as input of the 
second stage. This allows the second stage to leverage enriched spatial details, leading 
to more accurate surface predictions. To ensure accurate CSR across the entire human 
lifespan and facilitate its application in large-scale neuroimaging studies, we train and 
evaluate our method on a diverse dataset consisting of 8,987 T1-weighted (T1w) scans 
with ages spanning from 1 to 100 years. 

2 Method 

As illustrated in Fig. 1(a), we developed a two-stage framework, which employs dual-
decoder age-conditioned temporal attention network (DATAN) as backbone, for 
lifespan cortical surface reconstruction from thick-slice clinical brain MRI. In Stage 1, 
given a low-resolution thick-slice MRI (LR) as input, the DATAN jointly reconstructs 
a super-resolution MRI (SR-MRI 1) and a coarse cortical surface (Surface 1). Then, in 
Stage 2, DATAN takes SR-MRI 1 as input and reconstructs a second super-resolution 
MRI (SR-MRI 2), along with a fine cortical surface (Surface 2). Notably, both stages 
employ the same network and share the same initial template surface. 
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2.1 Dual-decoder Age-conditional Temporal Attention Network 

We introduce DATAN, which is designed to reconstruct cortical surfaces across the 
entire human lifespan while overcoming the difficulties posed by low-resolution, ani-
sotropic imaging data in clinical settings. As shown in Fig. 1(b), DATAN takes a LR 
MRI (linearly interpolated to isotropic resolution) as input. With DATAN’s dual-de-
coder design, we are able to jointly optimize DATAN on the SR and CSR tasks. 

Instead of treating SR and CSR as sequential and independent processes, we perform 
them jointly to leverage their shared reliance on rich spatial representation, particularly 
in the cortical regions where LR images typically appear blurred. To this end, DATAN 
employs a shared encoder that extracts rich spatial representations, followed by SR and 
CSR decoders, enabling concurrent training on both tasks.  

 

Fig. 1. (a) Coarse-to-fine two-stage lifespan cortical surface reconstruction from thick-slice clin-
ical MRI. In Stage 1, given LR-MRI as input, DATAN jointly predicts SR-MRI 1 and the coarse 
cortical surface (Surface 1). In Stage 2, DATAN takes SR-MRI 1 as input and predicts the fine 
cortical surface (Surface 2) along with SR-MRI 2. LR-MRI: low-resolution (thick-slice) MRI; 
SR-MRI 1: coarse super-resolution MRI predicted in Stage 1; SR-MRI 2: fine super-resolution 
MRI predicted in Stage 2; Surface 1: coarse cortical surface reconstructed in Stage 1; Surface 2: 
fine cortical surface reconstructed in Stage 2. (b) The architecture of the dual-decoder age-con-
ditioned temporal attention network (DATAN). With the dual-decoder design, DATAN is able 
to jointly perform MRI super-resolution (SR) and cortical surface reconstruction (CSR). Training 
on both tasks simultaneously enables the shared encoder to learn richer and complementary fea-
tures, which improves the model’s performance on both tasks. Finally, the model is conditioned 
on age and trained on a large and diverse MRI dataset spanning from 1 to 100 years of age, which 
facilitates the model’s generalizability across the entire human lifespan. FCN: fully connected 
network; SVFs: multiple stationary velocity fields; CTVF: conditional time-varying velocity 
field. 

The SR decoder generates super-resolution MRI from low-resolution input, serving 
two key purposes. On the one hand, inferring spatial details from low-resolution image 
compels the shared encoder to learn richer spatial representation, which directly bene-
fits the CSR decoder. On the other hand, the SR process enhances spatial details of the 
input data that might otherwise be lost due to the anisotropic nature of clinical MRI, 
which subsequently improves CSR performance in Stage 2.  
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Following CoTAN [19], we model the diffeomorphic deformation 𝜙௧: ℝ௫
ଷ → ℝ௫

ଷ  
through a time-varying velocity field (TVF) 𝑣௧: ℝ௫

ଷ → ℝ௫
ଷ , which, compared to station-

ary velocity field (SVF), allows us to capture more complex, large-scale deformations 
while still preserving smoothness and invertibility. The relationship between 𝜙௧ and 𝑣௧ 
is given by the following ordinary differential equation (ODE) [10, 15, 16, 19–24]: 

 
డథ೟

డ௧
= 𝑣௧(𝜙௧), 𝜙଴ = 𝐼𝑑, 𝑡 ∈ [0, 𝑇]                         (1) 

where 𝐼𝑑: ℝ௫
ଷ → ℝ௫

ଷ is the identity mapping. The equivalent integral equation (IE) al-
lows one to numerically solve the ODE in (1), i.e., 

 𝜙் = 𝐼𝑑 + ∫ 𝑣௧(𝜙௧) 𝑑𝑡
்

଴
.                                   (2) 

Let  𝑆଴ ⊂ ℝଷ denotes the initial surface template with points  𝑥଴ ∈ 𝑆଴ and define 𝑥௧ ∶=
𝜙௧(𝑥଴). Evaluating both sides of (2) at 𝑥଴, we get the equation as follows:  

   𝑥் = 𝜙்(𝑥଴) = 𝑥଴ + ∫ 𝑣௧(𝜙௧(𝑥଴)) 𝑑𝑡
்

଴
= 𝑥଴ + ∫ 𝑣௧(𝑥௧) 𝑑𝑡

்

଴
.   (3) 

Hence, in DATAN, we let the CSR decoder predict a conditional time-varying velocity 
field (CTVF) 𝑣௧, and obtain the predicted surface 𝑆் ⊂ ℝଷ with points 𝑥் ∈ 𝑆்  by nu-
merically solving the IE in (3). 

Finally, to handle large variation in cortical features and eventually facilitate accu-
rate CSR across lifespan, we employ a fully connected network (FCN) that learns a 
conditional temporal attention map given time 𝑡 and scan age 𝑎 as input. The learned 
attention maps are then used to weigh each velocity field during integration.  

2.2 Loss Function 

In our approach, we design a hybrid loss function that enables joint optimization for 
both the SR and CSR tasks. Specifically, during training, we adaptively adjust the 
weights for SR loss (ℒୗୖ) and CSR loss (ℒୌୖ), similar to the approach in [25]. The 
overall per-subject loss (ℒୈ) is defined as follows: 

 ℒୈ =  
ଵ

ଶఈభ
మ ℒୗୖ +

ଵ

ଶఈమ
మ ℒୌୖ + log 𝛼ଵ𝛼ଶ,                       (4) 

where 𝛼ଵ and 𝛼ଶ are trainable hyper-parameters that are initialized to 1 and updated 
during training. The SR and CSR losses are described in the following sections. 

Super-Resolution Loss. Given a pair of low- and high-resolution images (𝐿, 𝐻), the 
SR task predicts the output super-resolution image 𝐻෡.  We use the mean squared error 

(MSE) as the loss function for the SR task, i.e., ℒୗୖ =
ଵ

|ஐ|
ฮ𝐻෡ − 𝐻ฮ

ଶ

ଶ
, where |Ω| repre-

sents the total number of voxels in the MRI. 
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Cortical Surface Reconstruction Loss. For white matter surface reconstruction, we 
use Chamfer distance loss ℒୡୢ to quantify the deviation of the predicted surface from 
the ground-truth surface. In addition, to encourage the prediction of more plausible sur-
faces, we incorporate two regularization terms that are popular in literatures [14,19], 
namely, Laplacian loss ℒ୪ୟ୮ to encourage smoothness of the predicted surface, and nor-
mal consistency loss ℒ୬ୡ to encourage consistency between the normal vectors of adja-
cent faces.  The final CSR loss is given by: 

 ℒୌୖ = ℒୡୢ + 𝜆୪ୟ୮ℒ୪ୟ୮ + 𝜆୬ୡℒ୬ୡ (5) 

 
with weights 𝜆୪ୟ୮ and 𝜆୬ୡ. For pial surface reconstruction, we follow [11,19] and use 
the ground-truth (GT) white matter surfaces as the input for training. Then MSE loss 
can be computed between the vertices of predicted and ground-truth pial surfaces. 

3 Experiments 

3.1 Dataset and Implementation Details 

As illustrated in Table 1, we extensively evaluated our lifespan DATAN framework on 
a large-scale T1-weighted (T1w) MRI dataset comprising 8,987 scans from seven 
publicly available datasets. These datasets include diverse acquisition protocols and 
demographics, spanning infants, adolescents, adults, and elderly. Except ADNI, the 
remaining datasets were split into training (60%), validation (10%), and testing (30%). 
ADNI was used exclusively for external validation, with no involvement in training. 
All images were bias-corrected to start with, and treated as high-resolution (HR) MRIs. 
To simulate clinically acquired thick-slice data, we followed prior super-resolution 
studies [26, 27] and performed downsampling in the original physical space of each 
image. Specifically, consistent with the typical anisotropic spacing encountered in 
clinical MRI scans, we downsampled the high-resolution (HR) MRIs by a factor of 4 
in the axial direction. All HR-LR MRI pairs were affinely aligned to the MNI152 
template and cropped to a fixed size of 176 × 224 × 160. During training, LR images 
were first linearly interpolated to match HR resolution before entering the network. GT 
cortical surfaces were reconstructed using the FreeSurfer pipeline [5], except for BCP 
and NDAR infant datasets, which were processed with iBEAT v2.0 [9]. We trained our 
model using the Adam optimizer with an initial learning rate of 1 ×  10⁻⁵ , and 
empirically set the loss weights to 𝜆୪ୟ୮ = 0.5  and 𝜆୬ୡ =  5 × 10ିସ. 

3.2 Comparative Results 

To demonstrate the advantage of our approach, we compared it against two most recent 
template-based cortical surface reconstruction approaches: CoTAN [19] and CoSeg 
[20]. To evaluate the geometric accuracy of the reconstructed cortical surfaces, we 
employ two widely used metrics: average symmetric surface distance (ASSD) and 
Hausdorff distance (HD). The ASSD quantifies the average discrepancy between two 
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surfaces. It is computed by sampling a set of points from one surface and determining 
the mean distance between these points and their corresponding points on the other 
surface. This process is then repeated in the reverse direction, and the final ASSD is 
obtained as the average of these two mean distances. Meanwhile, the HD metric 
measures the maximum surface discrepancy. To enhance robustness, we adopt the 90th 
percentile distance (HD90) rather than the absolute maximum, following the 
recommendations in [15] and [19]. Additionally, we assess the topological quality of 
the reconstructed cortical surfaces using the ratio of self-intersecting faces (SIF), which 
quantifies the extent of topological errors in the reconstructed surface. 

Table 2 demonstrates that our method achieves superior performance in both white 
matter (WM) and pial surface reconstruction compared to other approaches. For white 
matter surface reconstruction, our method yields an ASSD of 0.261 mm for the left 
hemisphere, surpassing CoTAN and CoSeg by 39.44% and 63.34%, respectively. Fur-
thermore, our method also improves HD accuracy, reducing errors by 38.20% and 62% 
compared to CoTAN and CoSeg. For pial surface reconstruction, our method produces 
0.007% self-intersections, outperforming both CoTAN and CoSeg. Notably, CoSeg 
leverages cortical ribbon segmentations for weak supervision during training instead of 
GT surfaces but uses GT surfaces for evaluation. Hence, its poor performance can be 
attributed to the quality of segmentation in training data. Age-specific results are illus-
trated in Figs. 2 and 3. We evaluate our method on a large-scale T1w MRI dataset 
comprising seven public datasets, each covering a distinct age range from infancy to 
late adulthood (Table 1). To demonstrate our method’s generalizability across age 
groups, we visualize representative reconstructed cortical surfaces and their corre-
sponding error distance maps for each dataset (Figs. 2 and 3), rather than reporting 
summarized quantitative metrics. Our method performs especially well in younger age 
groups, where baseline methods often struggle to capture fine cortical structures due to 
significant developmental variability. Despite the challenges posed by low-resolution 
lifespan MRI data, our method consistently produces more accurate and smoother sur-
faces with minimal self-intersections. 

Table 1. Summary of datasets used across different age groups in our study. *: ADNI is used 
solely for validation, not training. 

Dataset Modality Resolution (mm3) Matrix Size Age range (Years) Number of Scans 
BCP [28] T1w 0.8×0.8×0.8 208×300×320 1-6 707 

NDAR [29] T1w 1×1×1 195×233×150 1-2 941 
HCPD [30] T1w 0.8×0.8×0.8 320×320×320 6-22 652 
HCP [31] T1w 0.7×0.7×0.7 260×311×260 22-37 1111 

HCPA [32] T1w 0.8×0.8×0.8 320×320×320 36-100 721 
NKI [33] T1w 1×1×1 256×256×256 6-85 1613 

ADNI* [34] T1w 1×1×1 256×256×256 55-97 3242 

3.3 Ablation Study 

For validation, we conducted ablation studies to assess the effectiveness of each 
component of our method. We adopt CoTAN as our baseline, which consists only of 
the CSR decoder and takes low-resolution (LR) images as inputs. Next, we introduced 
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the SR decoder into our DATAN framework using LR inputs. The quantitative results 
for different settings are presented in Table 3, demonstrating that our SR tasks 
significantly enhance CSR performance on LR lifespan MRIs. By reconstructing spatial 
details from LR images, the SR decoder force the shared encoder to learn richer spatial 
representations, thereby improving the quality of CSR. Furthermore, the incorporation 
of the coarse-to-fine two-stage refinement learning strategy provides additional 
improvements, highlighting its effectiveness in deformation learning. Our DATAN at 
Stage 2 exhibits fewer errors and artifacts compared to other settings. These observed 
enhancements underscore the effectiveness of our proposed method. 

Table 2. Comparison of different CSR methods in reconstructing the white matter and pial sur-
faces of the left hemisphere. Values are mean ± std over all subjects. 

Method 
White Matter Surface Pial Surface 

ASSD (mm) HD90 (mm) SIF (%) ASSD (mm) HD90 (mm) SIF (%) 

CoTAN 0.431 ± 0.103 0.953 ± 0.262 0.007 ± 0.030 0.442 ± 0.098 0.989 ± 0.263 0.057±0.067 
CoSeg 0.712 ± 0.092 1.550 ± 0.417 0.188 ± 0.121 0.735 ± 0.157 1.783 ± 0.697 0.395 ± 0.225 
Ours 0.261 ± 0.057 0.589 ± 0.145 0.001 ± 0.010 0.400 ± 0.083 0.880 ± 0.216 0.007 ± 0.023 

 

 

Fig. 2. Visualization of the reconstructed WM cortical surfaces for lifespan datasets. The geo-
metric error map depicts the chamfer distance (from 0 to 1 mm) between the predicted surfaces 
and the ground truth.  

Table 3. Ablation study for cortical surface reconstruction performance of our framework. Val-
ues are mean ± std over all subjects. Baseline: CoTAN with LR input; S1: Stage 1; S2: Stage 2. 

Method White Matter Surface Pial Surface 

 ASSD (mm) HD90 (mm) SIF (%) ASSD (mm) HD90 (mm) SIF (%) 
Baseline (LR) 0.431 ± 0.10 0.953 ± 0.26 0.007 ± 0.03 0.442 ± 0.10 0.989 ± 0.26 0.057 ± 0.07 
DATAN (S1) 0.302 ± 0.06 0.690 ± 0.15 0.002 ± 0.01 0.396 ± 0.09 0.887 ± 0.23 0.026 ± 0.03 
DATAN (S2) 0.261 ± 0.06 0.589 ± 0.14 0.001 ± 0.01 0.400 ± 0.08 0.880 ± 0.22 0.007 ± 0.02 
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Fig. 3. Visualization of the reconstructed pial cortical surfaces for lifespan datasets. The geomet-
ric error map depicts the chamfer distance (from 0 to 1 mm) between the predicted surfaces and 
the ground truth. 

3.4 External Validation 

To evaluate the robustness and generalizability of our method, we performed additional 
experiments on the ADNI dataset, which serves as an external dataset with 3,242 scans. 
The results in terms of ASSD, HD90, and SIF (Table 4) is comparable to the results on 
the testing dataset, which highlights our framework’s generalizability to unseen data. 

Table 4. External validation for cortical surface reconstruction performance of our framework 
on ADNI dataset. Values are mean ± std over all subjects. 

 ASSD (mm) HD90 (mm) SIF (%) 
White Matter Surface 0.281 ± 0.087 0.637 ± 0.394 0.001 ± 0.059 

Pial Surface 0.445 ± 0.088 0.993 ± 0.336 0.005 ± 0.076 

4 Conclusion 

In this work, we introduce a novel two-stage framework for coarse-to-fine lifespan 
cortical surface reconstruction from thick-slice clinical brain MRI scans, which 
facilitates neuroimage analysis of lifespan cortical development in clinical settings. To 
tackle the challenges of the low-resolution (LR), anisotropic MRI in clinical practice, 
we present DATAN that employs a dual-decoder structure for jointly performing SR 
and CSR tasks. The two decoders share a common encoder to learn rich representation 
of spatial features to improve the CSR from LR input. Furthermore, we train our frame-
work in a coarse-to-fine manner for more precise reconstruction. Experiments on the 
demanding task of cortical surface reconstruction using lifespan LR MRI data demon-
strate the superiority of our approach. In future work, we will explore more extensive 



     Lifespan Cortical Surface Reconstruction from Thick-Slice Clinical MRI 9 

data augmentation strategies, to accommodate for diverse MRI data in clinical settings 
and validate our method on more real clinical data. 
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