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Abstract. Geometric deep learning has shown great potential for cor-
tical surface analysis, but its performance often depends on a large-scale
training set of cortical surfaces, which are traditionally derived from MRI
scans through complex and time-consuming preprocessing pipelines. Al-
though deep learning-based surface reconstruction methods have stream-
lined this process, they still rely on MRI data, limiting the availability
of training data. To address this, we propose CortexGen, a geometric
generative framework that synthesizes highly realistic cortical surfaces
without requiring MRI scans. CortexGen employs geometric variational
encoders to map cortical surfaces into a latent space, where latent flow
matching models efficiently learn the true data distribution. This en-
ables a two-stage cortical surface synthesis process: first, deforming an
icosahedron-discretized sphere into a coarse cortical surface, and sec-
ond, refining it into a high-resolution surface. Experiments show that
CortexGen generates diverse, realistic cortical surfaces with 163,842 ver-
tices in just 1.4 seconds per surface. Using these synthetic surfaces as
augmented training data significantly improved learning-based cortical
surface parcellation in few-shot settings. Our code and pretrained models
are available at https://github.com/ladderlab-xjtu/CortexGen.

Keywords: Cortical surface synthesis · Latent flow matching · Cortical
surface parcellation · Data augmentation.

1 Introduction

Recent years have witnessed significant advancements in geometric deep learning
for cortical surface computing [24], particularly with promising outcomes in the
fundamental task of parcellation. To address the inherent challenges posed by

https://github.com/ladderlab-xjtu/CortexGen
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Fig. 1. We propose CortexGen, a geometric generative framework capable of synthe-
sizing realistic high-resolution cortical surfaces without the need of MRI data. Shown
here are representative examples of real (top) and synthesized cortical surfaces (bot-
tom), respectively.

the irregularity data structure of cortical surfaces, substantial efforts [25,5,6,27]
have focused on establishing dedicated network architectures for representation
learning. However, beyond architecture designs, the availability of large-scale
training data remains a critical factor in successfully training a deep model for
cortical surface parcellation.

To get such training data, reconstructing the cortical surfaces from MRI scans
remains the predominant approach. Traditional neuroimaging pipelines, such as
FreeSurfer [3], involves a multi-step process, including image preprocessing, tis-
sue segmentation, hemisphere separation, topology correction, and cortical sur-
face reconstruction. This intricate process is time-intensive, typically requiring
2~3 hours per scan. Recent advancements have spurred the development of deep
learning models for accelerated cortical surface reconstruction [9,18,13,26,1].
While have significantly streamlined the process, these methods have not ad-
dressed the issue of limited data source, as they still heavily depend on MRI
scans as the primary input.

Generative learning may offer a promising alternative, i.e., synthesizing real-
istic cortical surfaces. Particularly, diffusion models [7,19] have emerged as a well-
established paradigm in image synthesis [12,16,17], primarily due to their supe-
rior training stability compared to Generative Adversarial Networks (GANs) [4].
Although diffusion models have been applied to generate cortical curvature
maps [22], their potential for synthesizing cortical surfaces remains unexplored.

In this paper, for the first time, we introduce a novel generative framework,
termed CortexGen, for synthesizing highly realistic and fine-grained cortical
surfaces (see Fig. 1). Our framework has two stages: 1) deforming an icosahedron-
discretized sphere to generate a low-resolution cortical surface, and 2) refining
it to obtain a high-resolution cortical surface. At each stage, we train a geomet-
ric variational autoencoder (GVAE) for cortical surface self-reconstruction, and
employ flow matching [10,11], a powerful technique that enhances the training
and inference efficiency of denoising models, to learn the synthesis of cortical
surfaces in the latent space defined by the GVAE. These innovations collectively
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Fig. 2. The diagram of CortexGen, a two-stage generative framework based on latent
flow matching for cortical surface synthesis. Arrows in different colors represent differ-
ent workflows.

enable the synthesis of a realistic cortical surface with 163,842 vertices in just 1.4
seconds on an NVIDIA RTX3060 GPU. To further leverage the cortical surface
synthesis capability of CortexGen, we apply it as a data augmentation method
for few-shot cortical surface parcellation. Experimental results demonstrate that
CortexGen led to substantial improvements of parcellation performance, which
in turn justifies the high fidelity of synthesized cortical surfaces.

2 CortexGen

Our CortexGen is a geometric generative framework designed to synthesize real-
istic high-resolution cortical surfaces in the absence of MRI data. As illustrated
in Fig. 2, CortexGen involves two stages: 1) synthesizing a low-resolution cortical
surface by deforming an icosahedron-discretized sphere (a standard ico5 sphere in
this study), and 2) synthesizing a high-resolution cortical surface (with the same
vertical connectivity as a standard ico7 sphere) conditioned on the low-resolution
initialization. Inspired by the powerful latent diffusion models [15], both stages
are implemented in two steps: 1) training a GVAE for surface self-reconstruction,
and 2) training a latent flow matching (LFM) model for high-quality generation
in the GVAE hidden space.

2.1 Cortical Surface Self-Reconstruction

Given an icosahedron-reparameterized original cortical surface SH , which shares
the same number of vertices and connectivity as a standard ico7 sphere, its low-
resolution counterpart SL is derived by downsampling and smoothing, having
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the same number of vertices and connectivity as a standard ico5 sphere. Two
independent GVAEs are then trained for self-reconstruction of these respec-
tive surfaces. Notably, cortical surface self-reconstruction is performed by apply-
ing learnable deformation to an initial template surface, in line with common
practices in current deep learning-based cortical surface reconstruction meth-
ods [9,18,13,26,1].

For the self-reconstruction of low-resolution cortical surface, we employ the
convolution, pooling, and transposed convolution proposed by [25] to construct
GV AEL, which consists of an encoder EL, a decoder DL, and a deformation
block ML. The encoder EL comprises three convolutional blocks, each incor-
porating a 1-ring convolution, batch normalization, and LeakyReLU activation,
with pooling layers following the first two blocks. The decoder DL, while main-
taining the same three-block structure, differs in that the first two blocks are
each followed by a transposed convolution.

The encoder EL extracts a d-dimensional latent representation characterized
by a distribution with mean µL ∈ R642×d and variance σL ∈ R642×d, such that
µL, σL = EL(VSL

), where VSL
∈ R10242×3 represents the 3D coordinates of all

vertices on SL. In the absence of MRI data and, consequently, the unavailability
of the velocity field, the decoder DL generates a N -channel feature map FL ∈
R10242×N , defined as FL = DL(zL), where zL = µL + σL · ε, and ε ∼ N (0, 1).
This feature map guides the deformation of the initial template spherical surface
(a standard ico5 sphere, denoted as S0) through the deformation block ML.

Inspired by the successful application of neural ordinary differential equations
(NODEs) [2] in cortical surface reconstruction [13,1], we model the deformation
from S0 to SL as an ODE via a neural network, i.e., the deformation block ML:

dV (t)

dt
= ML(V (t), FL), V (0) = VS0

, (1)

where VS0
∈ R10242×3 contains the 3D coordinates of all vertices on S0, V (t)

represents the coordinates at time t ∈ [0, 1], and the final coordinates V (1) are
expected to match VSL

. To solve this ODE, we employ a fixed-step ODE solver,
i.e., the forward Euler method, which can be expressed as:

V (x+ 1) = V (x) + h ·ML(V (x), FL), (2)

where x ∈ {0, · · · , X − 1}, X is number of steps, h = 1/X is the step size, and
ML : R3 × RN → R3 is implemented as a four-layer MLP.

We train GV AEL by minimizing a weighted sum of multiple loss function:

LGVAEL
= L1(V̂SL

, VSL
) + λ1Llap(V̂SL

) + λ2Lnc(V̂SL
) + λ3LKL(µL, σL), (3)

where V̂SL
represents the coordinates of the reconstructed low-resolution cor-

tical surface, L1 is the mean absolute distance between corresponding vertices
in V̂SL

and VSL
, Llap is the mesh Laplacian loss that promotes smoothness of

the reconstructed mesh, Lnc is the normal consistency loss that constrains the
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cosine similarity between the normals of two adjacent faces, LKL is the Kullback-
Leibler divergence to regularize the discrepancy between the latent representa-
tion distribution and the standard normal distribution, and λ1, λ2, λ3 are the
corresponding weighting coefficients.

The GV AEH for high-resolution cortical surface self-reconstruction shares a
similar architecture and optimization objective with GV AEL, consisting of an
encoder EH , a decoder DH , and a deformation block MH , which are structurally
identical to EL, DL, and ML, respectively. However, GV AEH differs in two key
aspects: 1) its input is VSH

∈ R163842×3, representing the 3D coordinates of
all vertices on SH , and 2) its initial surface, denoted as S̃H , is obtained by
subdividing each triangular face on SL twice, resulting in a mesh with the same
vertex count and connectivity as SH .

2.2 Latent Flow Matching

In the GVAE latent space, a deterministic continuous normalizing flow mapping
the standard normal distribution to the latent distribution of cortical surfaces is
trained via flow matching (FM) [10,11], a simulation-free method.

Based on the optimal transport theory [14,20], FM assumes that the transi-
tion from the source distribution (i.e., the standard normal distribution) to the
target distribution (i.e., the latent representation distribution) follows a straight
path between the two distributions, driven by a constant velocity field. Specifi-
cally, the training of denoising model for low-resolution cortical surface synthe-
sis proceeds as follows. Given empirical observations of the target distribution
zL0 ∼ N (µL, σL) and source distribution zL1 ∼ N (0, 1), noise is added to zL0

according to:
zLt = tzL0 + (1− t)zL1, (4)

where zLt represents the linear interpolation between zL0 and zL1, and time
t ∈ [0, 1] controls the degree of noise corruption. The velocity field is modeled by a
neural network vθL (i.e., the denoising model, implemented as a time-conditional
Spherical U-Net [25] in this study) with parameter θL, which is optimized by
minimizing:

LvθL
= EzLt,t

[
∥zL0 − zL1 − vθL(zLt, t)∥

2
2

]
. (5)

The training process for the denoising model in high-resolution cortical sur-
face synthesis follows the same procedure as that for low-resolution cortical sur-
face synthesis, with the exception that VSL

, serving as conditional information,
is passed to the denoising network vθH along with zHt as:

LvθH
= EzHt,t

[
∥zH0 − zH1 − vθH(zHt, VSL

, t)∥22
]
. (6)

Notably, to bridge the gap between V̂SL
and VSL

, we refer to the practice
in [21]. After training vθL and vθH , vθH is finetuned on V̂SL

as:

L
′

vθH
= EzHt,t

[∥∥∥zH0 − zH1 − vθH(zHt, V̂SL
, t)

∥∥∥2
2

]
. (7)
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2.3 Inference

Firstly, a low-resolution cortical surface is synthesized through the following
steps: 1) the network vθL denoises a sample drawn from the standard normal
distribution to obtain a latent code; 2) this latent code is decoded by DL to pro-
duce a feature map; 3) guided by this feature map, ML deforms the sphere S0

to generate a low-resolution cortical surface. Next, a high-resolution cortical sur-
face is synthesized through the following steps: 1) conditioned on the synthesized
low-resolution cortical surface, the finetuned vθH denoises a sample drawn from
the standard normal distribution to obtain a latent code; 2) this latent code is
decoded by DH to produce a feature map; 3) under the guidance of this feature
map, MH deforms the subdivided low-resolution cortical surface to produce the
final high-resolution cortical surface.

3 Experiments

We first demonstrated the ability of CortexGen to synthesize realistic cortical
surfaces by employing it as a data augmentation method for few-shot cortical
surface parcellation. Then, we performed ablation studies on several key compo-
nents of the framework to assess the effectiveness of our design.

3.1 Dataset

All experiments were conducted using the Baby Connectome Project (BCP)
dataset [8], which contains 213 subjects and 417 icosahedron-reparameterized
original cortical surface meshes. Each mesh corresponds to 36 regions of interest
(ROIs) and has the same number of vertices and connectivity as a standard ico7
sphere. For preprocessing and data correction, we applied Laplace smoothing
to all meshes by moving each vertex to the average coordinates of its adjacent
vertices, and retained only those meshes without self-intersecting faces. The final
dataset included 180 subjects and 327 meshes. The 3D vertex coordinates of all
cortical surfaces were normalized to the range [-1, 1]. We focused only on the
left hemisphere, given its similarity to the right hemisphere.

3.2 Experimental Setup

Following common practices in supervised deep learning, we split all cortical
surfaces into training, validation, and test sets at the subject level, with the ratios
of 60%, 20%, and 20%, respectively. We learned a deep learning-based cortical
surface parcellation model on the training set, and evaluated its performance on
the test set using the parameters that achieved the highest Dice coefficient on
the validation set. This setup is referred to as “Fully Supervised”.

In the context of few-shot cortical surface parcellation, where only a limited
number of labeled cortical surfaces are available in the training set, we lever-
aged these labeled surfaces to generate pseudo-labels for the remaining unla-
beled training surfaces, thus augmenting the dataset. Specifically, we first used
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Table 1. Performance of Spherical U-Net and Cortex-Diffusion under different se-
tups, quantified in terms of Dice Coefficient (%). The table also reports the mean
improvement of “Real_aug” and “Gen_aug_N” over the baseline (i.e., “SD”), shown in
parentheses after each item.

Setups Baseline Spherical U-Net Cortex-Diffusion
SD 83.81± 1.93 - -
Real_aug - 83.85±1.80 (0.04±1.12) 83.66±1.76 (-0.15±1.15)
Gen_aug_200 (ours) - 84.00±1.75 (0.19±0.81) 83.94±1.88 (0.13±1.01)
Gen_aug_500 (ours) - 84.23±1.76 (0.42±0.59) 84.14±1.90 (0.33±0.74)
Gen_aug_1000 (ours) - 84.33±1.83 (0.52±0.56) 84.35±1.92 (0.54±0.64)
Fully Supervised - 89.06±2.95 88.96±2.95

FreeSurfer [3] to perform spherical mapping and calculate cortical attributes
(i.e., mean curvature and sulcal depth) for all cortical surfaces in the training
set. Then, we used Spherical Demons [23] to register each labeled spherical cor-
tical surface to the unlabeled spherical cortical surfaces, obtaining the resulting
warped label maps. For each vertex, the final pseudo-label is determined by the
label with the maximum number of assigned labels. Finally, the combination of
labeled and pseudo-labeled cortical surfaces formed the augmented training set.
This setup is referred to as “Real_aug”. In our implementation, the number of
few-shot samples was set to 3 (i.e., 3-shot learning for parcellation).

A similar steup to “Real_aug”, but with some differences, is defined by
“Gen_aug_N”, a data augmentation strategy based on our CortexGen. Specif-
ically, we trained CortexGen on the training set and used it to synthesize N
realistic cortical surfaces. The pseudo-labels for these surfaces were generated in
the same manner as in "Real_aug". Only the synthesized cortical surfaces were
used to form the augmented training set.

Finally, we defined a baseline termed “SD”. In this setup, we registered the
labeled cortical surfaces from the training set to all cortical surfaces in the test
set. The pseudo-labels were then directly used as the parcellation predictions for
the cortical surfaces in the test set.

We considered two deep learning methods for cortical surface parcellation: 1)
a spherical mapping-based model, i.e., Spherical U-Net [25], and 2) an original
cortical surface-based model, i.e., Cortex-Diffusion [27]. The performance of
all models was quantitatively evaluated in terms of the Dice coefficient.

3.3 Results

Few-shot cortical surface parcellation. The results obtained by Spherical
U-Net and Cortex-Diffusion under different setups, along with their improve-
ments over the baseline setup, are summarized in Table 1, leading to two key
observations. First, for both spherical surface-based and original surface-based
models, although inferior to the “Fully Supervised” setup, “Gen_aug_N” consis-
tently achieves greater performance gains than “Real_aug”, demonstrating the
broad applicability of “Gen_aug_N”. In contrast, the performance gain from
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Fig. 3. Front and back views of high-resolution cortical surfaces (bottom) synthesized
by different frameworks, conditioned on the same low-resolution synthetic cortical sur-
faces (top). Red arrows highlight the areas where CortexGen outperforms the other
two variants in terms of quality.

“Real_aug” is sometimes even negative. Second, as N increases (i.e., as the num-
ber of available cortical surfaces for training increases), the performance gain
from “Gen_aug_N” also increases. The superior performance of “Gen_aug_N”
not only highlights the reliability of CortexGen as a data augmentation tool but
also reflects the high quality of the synthesized cortical surfaces.

Ablation study on high-resolution cortical surface synthesis. In our
framework, the high-resolution cortical surface is obtained by super-resolution
of the synthesized low-resolution cortical surface, which involves two key fac-
tors: 1) the training of vθH is conditioned on the low-resolution cortical surface;
and 2) after the training of vθL and vθH , finetuning vθH on the reconstructed
low-resolution cortical surface is necessary to correct errors introduced during
self-construction. To evaluate the effectiveness of these two components, we con-
structed two alternative frameworks: 1) CortexGen w/o condition, where
vθH only takes zHt and t as inputs to predict noise; and 2) CortexGen w/o
ft, where vθH directly predicts noise without fine-tuning.

As shown in Fig. 3, we visualized the representative high-resolution synthe-
ses by these variants, given the same synthesized low-resolution conditions. A
noticeable quality gap exists between the high-resolution cortical surfaces syn-
thesized by the first two frameworks, highlighting the importance of using the
low-resolution cortical surface as a condition when denoising with vθH . Moreover,
the visual advantage of CortexGen over CortexGen w/o ft indicates that fine-
tuning significantly mitigates the reconstruction errors from GV AEL, resulting
in smoother cortical surfaces.
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4 Conclusion

In this paper, we propose a novel generative framework, CortexGen, to synthe-
size realistic high-resolution cortical surface without the need for MRI data. By
efficiently learning the data distribution of real cortical surfaces, CortexGen can
generate diverse synthetic cortical surfaces, which can be used for data augmen-
tation in the context of few-shot cortical surface parcellation.
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