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Abstract. Multi-sequence magnetic resonance imaging (MRI) plays a
critical role in tumor diagnosis but relies heavily on manual interpreta-
tion, which is both labor-intensive and dependent on expert knowledge.
While deep learning-based diagnostic methods show significant poten-
tial, they typically require large datasets for effective training. However,
the high cost of data collection and annotation often limits the avail-
able dataset size. This highlights the need for models that can effec-
tively train on small datasets, mitigate overfitting, and achieve reliable
performance. To address these challenges, we propose RadioFormer, a
novel model that incorporates radiologist inductive bias to facilitate ef-
ficient learning on small MRI datasets. Unlike traditional 2D or 3D ar-
chitectures, RadioFormer emulates the radiologist’s diagnostic process
by explicitly parsing MRI data into three hierarchical levels: (1) single-
sequence slice feature extraction, (2) multi-sequence slice information
aggregation, and (3) inter-slice information (volume) aggregation. Each
level builds upon the previous one, ensuring smooth information flow
and a hierarchical understanding of lesion characteristics. By integrat-
ing expert knowledge into its design, RadioFormer effectively leverages
inductive bias to enhance model generalization on small datasets. We
evaluated RadioFormer on three public datasets for brain, breast, and
liver tumor classification, where it achieved state-of-the-art performance
across all tasks. The code and pre-processed data for RadioFormer are
available at https://github.com/aal234241/RadioFormer/tree/master.
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1 Introduction

Cancer remains one of the leading causes of mortality worldwide, accounting for
millions of deaths each year [6]. Magnetic resonance imaging (MRI) plays an
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Fig. 1: Nlustration of common tumor classification models: (a) The 2D model,
which stacks slices from each MRI sequence as input; (b) The 3D model, which
stacks all sequences together as input; (¢) The mid-fusion model, which first
extracts features from each sequence and then fuses them in the middle stage
of the model; (d) Our RadioFormer, which divides feature extraction and fusion
into three stages, inspired by the diagnostic practice of radiologists.

important role in tumor detection, characterization, and treatment planning. In
particular, multi-sequence MRI provides a more detailed view of tissue proper-
ties by capturing images at different time points after contrast agent injection
or across different imaging protocols. However, accurately interpreting multi-
sequence MRI remains challenging, requiring extensive expertise and experience
from radiologists. Additionally, manual diagnosis is time-consuming and sub-
ject to inter-observer variability, highlighting the need for automated diagnostic
models to assist clinicians in tumor classification.

The advent of deep learning has catalyzed significant progress in image-based
tumor diagnosis. While current methods primarily focus on specific organs, such
as the liver [28I32129125127], lung [1U19], kidney [26l8], breast [30/31], and brain
[3122], they generally follow similar design strategies. These methods typically
process input 3D images in one of three ways: (a) as 2D slices, using 2D models
for classification [I8IITI20]; (b) by leveraging 3D models for direct classification
[I723]; or (c) by first extracting features from each sequence and fusing them
at an intermediate stage of the model [I6/27125], as shown in Fig. [[[a)(b)(c).
The 2D approach often utilizes pre-trained models from ImageNet to enhance
performance. For instance, Swati et al. used the pre-trained VGG-16 model for
brain tumor classification [20]. While this approach is straightforward and effec-
tive, it lacks a holistic interpretation of the 3D tumor volume, which can limit its
ability to capture complex, inter-slice tumor characteristics. In contrast, the 3D
approach classifies the entire 3D volume directly but suffers from the challenge
of limited dataset size. Tumor datasets typically consist of only hundreds to a
few thousand cases, making them prone to overfitting and resulting in subopti-
mal performance. Some researchers attempt to address this limitation by using
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pre-trained 3D models from video data [I6I14], but the significant domain and
semantic gap between medical imaging and video data often lead to unsatis-
factory results. Other approaches utilize customized models to better extract
and fuse features from different sequences. For example, Wang et al. proposed
a method called TransLiver [25], which first uses independent Pyramid Vision
Transformers (PVTs) [24] for each sequence image to extract sequence-specific
features and then inputs them into a fusion module to obtain the final feature
representation. While this approach improves feature fusion, it still faces the
challenge of limited data size.

In this study, we introduce RadioFormer, a radiologist-inspired hierarchi-
cal Transformer model designed to effectively learn from modestly sized tumor
datasets. RadioFormer departs from traditional 2D or 3D model designs by in-
corporating a hybrid 2D-3D data flow that mirrors the inductive bias of radiolo-
gists. Specifically, the architecture of RadioFormer is informed by the diagnostic
practice of radiologists, who typically begin by inspecting each sequence image
slice-by-slice, identifying key slices containing valuable diagnostic clues. These
key slices are then collectively reviewed across sequences to reach a compre-
hensive diagnosis. RadioFormer mirrors this process through tripartite levels:
the single-sequence slice information extraction level, the multi-sequence slice
information aggregation level, and the inter-slice (volume) information aggrega-
tion level. At each level, RadioFormer employs pure vision Transformer blocks
to encode information. The output of each level serves as the input tokens for
the subsequent level, enabling a seamless flow of information and a hierarchical
understanding of the lesion characteristics.

Our RadioFormer is examined on three public datasets: the LLD-MMRI liver
tumor dataset [16] for classifying seven types of liver tumors, the Advanced-MRI-
Breast-Lesions dataset [9] for benign and malignant breast tumor classification,
and the ReMIND dataset [I3] for classifying three types of brain tumors. The
experimental results demonstrate that our RadioFormer achieves the best per-
formance across all three datasets, highlighting its superior capability. The code
and pre-processed data for our method are made publicly available.

2 Method

Figure [2]illustrates the image pre-processing step and overall architecture of the
proposed RadioFormer model. In the data pre-processing step, given the original,
unregistered multi-sequence MRI images, we employ the open-source UAE-M
method [4] to register all sequence images to one sequence. Subsequently, the
aligned multi-sequence tumor volumes are cropped from the registered images.
These cropped tumor volumes then serve as the input to our RadioFormer model.

RadioFormer is a tripartite-level Transformer-based model designed to fully
harness the diagnostic cues from volumetric data. The first level focuses on
feature extraction from individual sequence slices. The second level aggregates
information from aligned single-sequence slices, processing and consolidating it
into a series of multi-sequence slice tokens. Finally, the third level fuses the multi-
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sequence slice tokens to produce the final classification result. In the following
subsections, we will delve into each level in greater detail.
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Fig. 2: The overall architecture of the proposed RadioFormer model.

2.1 Single-sequence Slice Feature Extraction

Radiologists typically interpret MR images by first examining them slice by
slice, looking for important diagnostic clues for further investigation. Our Ra-
dioFormer model emulates this approach by first extracting features from each
sequence slice independently. Given a multi-sequence tumor volume with di-
mensions (C, H,W, L), where C' denotes the number of sequences, and H, W, L
represents the height, width, and length of the tumor volume, respectively. We
first reorganize the volume into an array of 2D transverse images. Each trans-
verse image contains three consecutive slices and has a shape of (3, W, L).This
reorganization results in an array of images with dimensions (C, H — 2,3, W, L).

Subsequently, we divide each transverse image into patches of size (P, P) and

flatten them, resulting in a sequence of vectors [x;h;xih; e ;xé\fh], where the
length of this sequence is denoted as N = % X %. These vectors are then lin-

early embedded, and positional embeddings are added, as shown in the following
equation:

Zc(,)f)z = [Xi,hEé Xz,hEs§ Tt §Xi\,/hES} + Epos, (1)

where ¢ € [1,C], h € [1, H — 2], D denotes the feature length, E € R(P*3)xD jg
the linear embedding layer and E s € RYV*P is the positional embedding. Each
ZS,)})L is then input into a series of ViT [10] Transformer encoder blocks. These
blocks consist of alternating layers of multiheaded self-attention (MSA) and



Title Suppressed Due to Excessive Length 5

multi-layer perception (MLP) modules, with Layer Norm (LN) applied before
each module. The mathematical representation is as follows:

z, ), = MSA <LN (zif}:l))) + zg}jl),

© (2)
z., = MLP (LN (z,,)) + 2.,

where ¢ € [1, Lg], Ls is the number of the Transformer blocks in this level. The
output of the final Transformer block ziLhS) = [yéh; yz,h; e 33’27}1] are regarded as
single-phase patch tokens. These tokens will serve as the input for the subsequent

multi-phase slice information aggregation level.

2.2 Multi-sequence Slice Information Aggregation

The objective of this level is to integrate the features extracted from single-phase
slices into a higher-level representation that captures multi-sequence informa-
tion. We begin with the spatially corresponding single-sequence patch tokens
Y0 Yhn 1Yol Alinear layer By, € ROP*P s utilized to project the con-
catenated tokens into a lower-dimensional multi-sequence patch token, as defined
by:

m;, = LN(Concat[y] »;¥5 i+ ;Yo n/Em)- (3)
Each multi-sequence slice is then represented by a series of these multi-sequence
patch tokens [m};m?;--- ;th ]. Building upon the previous level, we process
these multi-sequence patch tokens using a stack of Transformer encoder blocks.
To aggregate patch-wise information into a slice-wise representation, we intro-
duce a learnable multi-sequence slice token s to the patch tokens [m,ll; cees miLV ;8]
The fusion of multi-phase slice information is encapsulated in the following equa-
tions:

0
VEL) = [m}l;m%;~' ;th;s} ,
vh = MSA (LN (v ) + v, (4)

v = MLP (LN (v},)) 4 v},

where 5 € [1, Ly, and L, denotes the number of Transformer blocks in this level.
The output from the final Transformer block retains only the multi-sequence
slice token sy, corresponding to the initial input token s, as it encapsulates the
integrated information from all multi-sequence patches within this slice.

2.3 Inter-slice Information Aggregation

Having obtained the multi-sequence slice tokens s; from the previous level,
we now aggregate information across the entire series of multi-sequence slices
[S1,- - ,SH—2] to make the final classification. We begin by applying layer nor-
malization to this sequence and, following the Vision Transformer (ViT) paradigm,
we append a [class] token to the series of multi-sequence slice tokens. As with the
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previous levels, this processed sequence is then input into a series of Transformer

encoder blocks.
0 = [LN([s1;80; - ;8m-2])i ],

o' = MSA (LN (00~1)) + 00", (5)
o¥ = MLP (LN (o)) + 0/,

where ¢ € [1, L¢], and L¢ represents the number of Transformer blocks in this
final level. The output corresponding to the [class] token c is then subjected to
an additional layer normalization followed by a linear projection layer to produce
the classification logits.

3 Experiments

Data: Our RadioFormer model was trained and evaluated on three datasets: the
LLD-MMRI liver tumor dataset [16], the Advanced-MRI-Breast-Lesions (ABL)
dataset [9], and the ReMIND brain tumor dataset [I3]. The LLD-MMRI dataset
consists of seven types of liver tumors (hepatocellular carcinoma, intrahepatic
cholangiocarcinoma, hepatic metastasis, hepatic cysts, hepatic hemangiomas, fo-
cal nodular hyperplasia, hepatic abscesses), with a total of 498 cases, each having
8 MRI sequences. The ABL dataset includes 94 cases, each with 6 MRI sequences
for benign and malignant breast tumor classification. The ReMIND dataset con-
tains 71 cases, each with 2 MRI sequences for classifying three types of brain
tumors (Oligodendroglioma, Astrocytoma, Glioblastoma). For the LLD-MMRI
dataset, we follow the LLD-MMRI2023 challenge protocoﬂ performing 5-fold
cross-validation using the official train-validation splits (316 cases for training
and validation, and 78 cases for testing, Stage One rule) and also report results
on the test set (316 cases for training, 78 for validation, and 104 for testing,
Stage Two rule). For the ABL and ReMIND datasets, we perform 5-fold cross-
validation using random train-validation-test splits with a ratio of 3:1:1.

Implementation Details: The RadioFormer model was developed using Py-
Torch and all experiments were conducted on an RTX 4090 GPU. The architec-
ture comprises three levels, each with a specified number of Transformer blocks:
Ly = 12 for the single-sequence slice feature extraction level, L, = 2 for the
multi-sequence slice information aggregation level, and L¢ = 4 for the inter-slice
information aggregation level. To initialize the first level, we loaded ImageNet-
pretrained ViT model weights. For training, we employed the AdamW optimizer
with an initial learning rate of le-4, which was adjusted using a cosine learn-
ing rate schedule. The minimum learning rate was set to le-5, and the training
spanned 300 epochs. The first 5 epochs served as a warm-up phase, during which
the learning rate was progressively increased. The standard cross-entropy was
used as the loss function. The batch size was fixed at 4, and each lesion vol-
ume was resized to 16 x 128 x 128. Our data augmentation strategy included
random rotations and flips across various anatomical axes. During the training

* https://github.com/LMMMEng/LLD-MMRI2023
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Table 1: Comparative performance for tumor classification on LLD-MMRI Stage

One test set. The results are formulated as F1-score / Cohen’s Kappa.
LLD-MMRI2023 Stage One train-val splits

Methods [ Fold1 [ Fold2 [ Fold3 [ Fold4 [ Fold5
Swin3D [7] 0.662/0.610 | 0.643/0.606 | 0.679/0.634 | 0.644/0.612 | 0.675/0.644
Transliver [25] 0.714/0.695 | 0.705/0.667 | 0.687/0.681 | 0.650/0.624 | 0.689/0.679
Swin-S [15] 0.755/0.698 [0.735,/0.694| 0.721/0.662 | 0.734/0.729 | 0.747/0.689

Resnet18 [12] (Rank 2) [ 0.740,/0.699 [0.702/0.699 | 0.708,/0.692 | 0.729/0.713 | 0.721/0.710
Uniformer [14] (Rank 1)[ 0.746/0.728 [0.716/0.724] 0.721/0.693 [ 0.732/0.717 | 0.693/0.674

ViviT 2] 0.663/0.619 |0.692/0.671 | 0.733/0.691 | 0.691,/0.667 | 0.697/0.684
VideoMAE |21] 0.719,/0.701 | 0.676,0.645 | 0.722/0.706 | 0.712/0.672 | 0.693/0.674
TimeSformer 5] 0.641,/0.609 | 0.689,0.681 | 0.714/0.666 | 0.643/0.607 | 0.641,0.622
RadioFormer 0.796/0.777|0.710/0.713 |0.760,/0.747|0.771/0.761|0.796 /0.779

phase, lesion volumes were randomly cropped to 14 x 112 x 112. For evalu-
ation, a central crop of the same dimensions was extracted. In line with the
LLD-MMRI2023 challenge, the model’s performance was evaluated using the
F1-score and Cohen’s Kappa metrics. On LLD-MMRI dataset, the training time
of each model is about 2 hours, and the inference time is 1s per case.

Results: In Table[l] we present the detailed performance results for each fold un-
der the LLD-MMRI Stage One rule. To ensure a comprehensive comparison, we
evaluate recent classification methods, including Transliver [25], a Transformer-
based model specifically designed for liver tumor classification; Swin-S [I5];
Swin3D [7]; and video-based models such as ViViT [2], VideoMAE [2]], and
TimeSformer [5]. Additionally, we compare our method with the top two ap-
proaches from the LLD-MMRI2023 challengeﬂ which were based on a modified
Uniformer [14] (Rank 1) and a ResNet18 model [I2] (Rank 2). Our RadioFormer
consistently outperforms all compared methods in terms of both Fl-score and
Cohen’s Kappa across four out of five folds, achieving competitive results on the
remaining fold. This strong and consistent performance across different train-
validation splits underscores the effectiveness of our approach in liver tumor
classification. We further report the average five-fold cross-validation results
for the ABL and ReMIND datasets, along with the results on the LLD-MMRI
Stage Two test set in Table 2] In all cases, RadioFormer achieves the best over-
all performance, surpassing the recent SDR-Former [16], the solution provided
by the official LLD-MMRI dataset team. Additionally, we report the computa-
tional complexity of the comparative methods. As shown, RadioFormer has fewer
training parameters than most competing methods while maintaining moderate

OPS monstratin favorable balance between efficiency and accuracy.
%E{_‘atlf;ﬁ %etu y: To e%a uate t% 1 % the dli er}ént ilevels n gur

e contributions o
RadioFormer model, we first conducted an ablation study focusing on the multi-
sequence slice information aggregation (second) level and the inter-slice informa-
tion aggregation (third) level. We designed two variant models for this purpose.
Modell: In this variant, we replaced the second level of our RadioFormer with
a global average pooling layer. This modification eliminates the explicit feature

processing that occurs at the second level. Model2: we replaced the third level of

5 The codes of the top five teams are open-sourced.
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Table 2: Comparative performance for tumor classification on the LLD-MMRI
Stage Two test set and the average 5-fold cross-validation results on the ABL
and ReMIND datasets. The results are reported as Fl-score / Cohen’s Kappa.

[ Datasets [ Complexity
Methods | ABL [ ReMIND [LLD-MMRI Test|GFLOPS/Training Params (M)
Swin3D [7] 0.611/0.214 | 0.407/0.182 0.688/0.651 21.7/31.6
Transliver [25] | 0.591,/0.178 | 0.422/0.179 0.716,/0.654 572.8/154.6
Resnet18 [12] | 0.646/0.311 | 0.489/0.249 0.711/0.665 384.0/15.1
Uniformer [14] | 0.542/0.103 | 0.491/0.258 | 0.712/0.666 112.6/49.5
ViViT [2] 0.621/0.303 | 0.364/0.102 0.733/0.691 67.1/88.5
VideoMAE [21] | 0.630/0.290 | 0.417/0.173 | 0.722/0.706 61.4/88.0
TimeSformer [5]] 0.589/0.181 | 0.433/0.178 | 0.714/0.666 81.2/ 122.9
H2Former[16] - - 0.774/0.726 -
SDR-Former|16] - - 0.791/0.747 -
RadioFormer [0.695,/0.362(0.568/0.357| 0.806/0.745 209.8/32.1

Table 3: Ablations on the effects of second and third levels.
model [Fl—score/Cohen’s Kappa

Modell 0.788/0.762
Model2 0.815/0.807
RadioFormer 0.838/0.812

our RadioFormer with a global average pooling layer. We then compared their
average Fl-score and Cohen’s Kappa of the last 100 epochs on the fold1 valida-
tion subset. The results are shown in Table |3} The comparison reveals that both
the second and third levels of RadioFormer contribute to the model’s overall
performance.

Our RadioFormer explicitly processes the input multi-sequence data in three
levels, following a C-N-H order. First, it fuses the slices along the sequence
dimension (C), reducing the number of channels (C) to 1. Next, it consolidates
the N tokens within each slice into a single token. Finally, it aggregates the H slice
tokens to produce the final classification result. This approach mirrors the clinical
practice of radiologists. Additionally, we tested other parsing orders on the LLD-
MMRI Stage One Fold1, with results presented in Table [ As shown, our C-N-
H parsing order achieves the best performance. This further demonstrates the
importance of incorporating radiologists’ inductive bias into model design.

4 Conclusion

In this work, we introduce RadioFormer, a radiologist-inspired model designed
to effectively learn from modestly sized multi-sequence MRI tumor datasets.
Unlike traditional 2D or 3D model architectures, RadioFormer incorporates a
hybrid 2D-3D data processing flow that mirrors the way radiologists interpret
MRI images. Our extensive testing on three different datasets demonstrates that
RadioFormer consistently delivers stable and high-performance results across all
datasets.
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Table 4: Ablations on the parsing order.
order [Fl—score/Cohen’s Kappa

N-C-H 0.656,/0.619
N-H-C 0.683/0.637
H-N-C 0.631,/0.598
H-C-N 0.729/0.726
C-H-N 0.754/0.741
C-N-H 0.796/0.777
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