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Abstract. Low-dose computed tomography (LDCT) and low-dose positron
emission tomography (LDPET) imaging substantially reduce radiation
exposure compared to their normal-dose counterparts, mitigating health
risks such as elevated cancer incidence. However, the resulting LDCT
and total-body LDPET images are often compromised by noise and
artifacts stemming from photon starvation and electronic interference.
While supervised reconstruction methods have tackled challenges like
over-smoothing and training instability, their generalization is hindered
by variations in imaging devices, dosage levels, and modality-specific
characteristics. Recent advances in text-guided models have augmented
traditional deep learning techniques, offering greater adaptability. Build-
ing on this, we propose a Text-guided Unified Framework (TUF) for
high-precision reconstruction of LDCT and total-body LDPET images.
Leveraging insights from cold diffusion paradigms, TUF introduces a
novel mean-preserving degradation operator to model the physical pro-
cess of image degradation. Additionally, we design a dual-domain fusion
network that converts textual inputs into scaling and shifting factors,
enabling seamless integration of text cues at each timestep. Extensive
experiments across four publicly available datasets reveal that TUF sur-
passes state-of-the-art methods in both reconstruction quality and gen-
eralization across LDCT and total-body LDPET imaging scenarios. The
code will be available at TUF-code.
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1 Introduction

Low-dose computed tomography (LDCT) and total-body low-dose positron emis-
sion tomography (LDPET) are vital for radiation-sensitive applications, includ-
ing pediatric cancer screening and personalized dosimetry [23,8]. Compared to

https://github.com/AI-NMI/Text-Guided-Unified-Framework-for-Low-Dose-CT-and-Total-Body-PET-Reconstruction.git
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their normal-dose CT (NDCT) and normal-dose PET (NDPET), these low-dose
modalities significantly reduce radiation exposure while maintaining diagnostic
capabilities. Yet, their clinical adoption is impeded by conventional reconstruc-
tion methods, which rely on isotropic Gaussian priors or single-domain process-
ing and struggle to mitigate non-stationary quantum noise and aliasing artifacts
prevalent in ultra-low photon counts or rapid-scan protocols [4,9,15]. This chal-
lenge is particularly pronounced in complex anatomical regions—such as the pul-
monary hila or hepatic vasculature—where existing methods often blur critical
microcalcifications (<1 mm) or submillimeter pulmonary nodules, key indicators
of early malignancies [12,13]. Although recent deep learning approaches achieve
high peak signal-to-noise ratios (PSNR), their lack of physics-based constraints
and semantic grounding often results in clinically implausible reconstructions,
especially across heterogeneous imaging systems (e.g., dual-source vs. photon-
counting CT) or patient-specific anatomies [1,3]. These shortcomings highlight
a pressing need for a reconstruction paradigm that transcends the limitations of
task-specific models and integrates domain knowledge into a cohesive, adaptable
framework.

To this end, we propose the Text-guided Unified Framework (TUF), a novel
framework that achieves adaptive image reconstruction through text-conditioned
cross-modal guidance, where clinical text semantics dynamically regulate recon-
struction fidelity for anatomically accurate results. At its core, a cold diffusion
paradigm employs a mean-preserving degradation operator to capture the first-
order moment characteristics of LDCT and LDPET degradation, inverting tra-
ditional diffusion by treating the noisy low-dose image as the endpoint. This
physics-informed strategy is paired with a dual-stream network that balances
spatial and frequency-domain processing, preserving fine details while correcting
global artifacts. Crucially, the Text Interaction Guidance Architecture (TIGA)
implements CLIP-derived semantic conditioning with clinical linguistic priors,
establishing an interpretable pathway for prompt-guided artifact correction. Ex-
tensive validation on clinical benchmarks establishes TUF as a new standard for
unified, high-fidelity low-dose imaging reconstruction.

2 Methods

TUF is a radiation-aware framework designed for diagnostic-quality LDCT and
LDPET reconstruction (Fig. 1). It integrates three core components: (1) a Cold
Diffusion Sampling Process (CDSP) with learnable transition kernels, (2) a Dual-
domain Reconstruction Network (DDRN) fusing Fourier and spatial features,
and (3) a Text Interaction Guidance Architecture (TIGA) leveraging clinical
linguistic priors through cross-modal alignment.

2.1 Cold Diffusion Sampling Process (CDSP)

The CDSP redefines diffusion modeling for low-dose imaging by introducing
a statistically constrained degradation operator that preserves first-order mo-
ments, tailored to the structured noise in LDCT and LDPET. Unlike traditional
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Fig. 1. The overall architecture of the proposed TUF network. (a) TUF overview; (b)
WKAN-UNet framework; (c) WKAN framework.

diffusion models that add isotropic noise, CDSP simulates degradation from a
full-dose image x0 to a noisy low-dose image xt. Formally, the forward process
is:

xt = αtx0 + (1− αt)xT , t = 1, . . . , T, (1)

where αt ∈ (0, 1) decreases over time, blending x0 into xT . This inverted ap-
proach aligns with clinical imaging physics, enabling the reverse process to re-
construct high-quality images from noisy inputs. The reconstruction is performed
by a parameterized operator Rθ, where the predicted full-dose image x̂0 can be
formulated as:

x̂0 = Rθ(xt, t) (2)

2.2 Dual-domain Reconstruction Network (DDRN)

The DDRN is engineered to reconstruct low-dose images with high fidelity by
processing them in both frequency and spatial domains. This dual-stream ap-
proach leverages the complementary strengths of each domain: the frequency-
domain stream excels at capturing global patterns and mitigating pervasive noise
artifacts, while the spatial-domain stream preserves local details and textures
critical for medical image interpretation. In the frequency-domain stream, we
apply the Discrete Fourier Transform (DFT) to the input low-dose image xt:



4 W. Wang et al.

xR, xI = F(TIGA(xt)), (3)

where xR and xI denote the real and imaginary components, respectively. These
components are concatenated and processed through a phase-aware convolu-
tional network: x̂R, x̂I = σ · BN(PConv(Concat(xR, xI))),where σ denotes the
ReLU function, BN denotes batch normalization, and PConv denotes phase-
aware convolution. Then, the reconstructed image xfrequency output from the
frequency-domain branch can be defined as:

xfrequency = F−1(x̂R, x̂I), (4)

where F−1 is the inverse DFT
In the spatial domain, we propose WKAN-UNet, a novel architecture that

integrates Wavelet-Kolmogorov-Arnold Networks (WKAN) into skip connection
paths to enhance interpretability and model nonlinear dependencies[11]. The
WKAN modules leverage wavelet-based operations to perform multi-scale non-
linear transformations, effectively refining both spatial details and semantic rep-
resentations. As illustrated in Fig. 1 (c), each WKAN module comprises depth-
wise convolution (DWConv) followed by N stacked WKAN-Layers. The mathe-
matical formulation of a WKAN with N layers can be expressed as:

WKAN(I) = ΦN−1 ◦ ΦN−2 · · ·Φ1Φ0, (5)

where I is the input feature map, and Φi denotes the i-th WKAN layer. The
transition between layers is defined as: Ii+1 = DWConv(Φi(Ii;w, σ, b)),with the
WKAN layer function given by:

Φ(x;w, σ, b) = w ·
(
(x− b)2 − 1

)
e
− (x−b)2

2σ2 . (6)

Here, w, σ, and b are learnable parameters that adapt the transformation to the
data. The final reconstructed image is obtained by fusing the outputs from the
frequency-domain and spatial-domain branches, controlled by a learnable fusion
parameter α, which balances the contributions from both streams:

x̂DDRN = α · x̂WKAN-UNet + (1− α) · xfrequency, (7)

where x̂WKAN-UNet is the reconstruction result from the spatial domain branch.

2.3 Text Interaction Guidance Architecture (TIGA)

We introduce the TIGA, a module designed to integrate clinical linguistic priors
into image reconstruction through semantic-aware feature modulation. TIGA
utilizes frozen CLIP embeddings Ftext = FT (Ttext) from user-specified text
prompts, exploiting the model’s cross-modal alignment capabilities established
during contrastive pretraining. Note that Ftext denotes the text features gener-
ated by encoding the text prompt using the CLIP model. We define a nonlinear
projection module to process these embeddings to derive dynamic modulation
parameters:

{γm, βm} = Φm(Ftext), (8)
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where Φm consists of learnable multi-layer perceptrons (MLPs), producing scal-
ing factors γm and bias terms βm. These parameters adaptively recalibrate the
fusion features as follows:

F̂f = (1 + γm)⊙ x̂+ βm, (9)

where x̂ denotes the input features, ⊙ represents element-wise multiplication,
and F̂f denotes the modulated output features, enriched with textual semantics
while preserving structural integrity.

3 Experiments

To demonstrate the effectiveness of the proposed TUF for the two different
modalities, we perform the evaluation on four datasets: two open-access (OA)
LDCT datasets and two OA LDPET datasets. Following, we conduct experi-
ment under two different experimental settings: (a) all-in-one experiments:
both LDCT and LDPET images, along with diverse dose level descriptions and
reconstruction task descriptions provided by clinical scenarios.; (b) single-task
experiments: single modality, single low-dose level, without incorporating di-
verse clinical scenario text descriptions.

Table 1. Comparisons under all-in-one reconstruction setting for CT-Dataset.

Method 20%(Mayo-2020) 25%(Mayo-2016)

CLIP [2] 30.36/0.725 41.14/0.959
Restore-RWKV [18] 30.29/0.718 41.58/0.960

Restormer [20] 30.81/0.729 40.91/0.950
PromptIR [16] 31.93/0.766 42.38/0.963

TUF (Ours) 33.04/0.795 43.08/0.965

Table 2. Comparisons under all-in-one reconstruction setting for Bern and UI-
Datasets.

Method Bern-Dataset UI-Dataset

5% 10% 5% 10%

CLIP [2] 38.13/0.887 39.36/0.943 35.29/0.846 37.01/0.855
Restore-RWKV [18] 37.11/0.885 39.77/0.938 34.30/0.819 36.88/0.852

Restormer [20] 36.88/0.852 39.12/0.929 33.83/0.804 38.10/0.897
PromptIR [16] 38.12/0.885 39.77/0.935 34.97/0.835 37.11/0.876

TUF (Ours) 39.76/0.943 41.09/0.949 36.49/0.866 38.43/0.889
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3.1 Dataset and Training Details

Mayo2016 and Mayo2020 Datasets. The experimental design employs the
‘2016 NIH-AAPM-Mayo Clinic Low-Dose CT Grand Challenge’ dataset contain-
ing 5,936 normal-dose CT slices and corresponding quarter-dose counterparts
(1mm slice thickness) from 10 subjects. Testing data consists of LDCT slices
from patient L506, while the remaining 9 patients’ data are partitioned into
80% training and 20% validation subsets. The Mayo2020 dataset expands this
scope with 299 patient cases featuring dual-dose acquisitions [14]. Our selection
strategy includes 36 20% dose samples (19 thoracic and 17 abdominal) for model
training, complemented by a dedicated test set containing 1,562 abdominal slices
reconstructed from 20% dose data.
MICCAI2022 Challenge Datasets. The Bern Dataset, acquired from the
Department of Nuclear Medicine, University of Bern, Switzerland, using the
Siemens Biograph Vision Quadra, and the UI Dataset, obtained from the De-
partment of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong Univer-
sity School of Medicine, using the United Imaging uEXPLORER, both pro-
vide raw LDPET projections across three reduced-dose levels (5% and 10%
of standard dose). Further details on these datasets can be found at: https:
//ultra-low-dose-pet.grand-challenge.org.
Training Details. The TUF training utilized a learning rate of 2×10−4, a batch
size of 7, and a GPU memory consumption of 21.33 GB, with the Adam optimizer
ensuring efficient convergence. All datasets were divided into 80% for training,
10% for validation, and 10% for testing. Reconstruction quality of each image
was assessed using peak signal-to-noise ratio (PSNR) and structural similarity
index (SSIM).

3.2 All-in-one experiment results

In comprehensive evaluations of multi-task medical image reconstruction (i.e.,
all-in-one experiment), the TUF demonstrates state-of-the-art performance across
diverse datasets and degradation scenarios. On the Mayo-2020 CT dataset un-
der 20% dose conditions (see Table 1), our approach achieves PSNR of 33.04 dB
and SSIM of 0.7949, significantly surpassing PromptIR (31.93/0.766) and other
baselines by significant margins. At 25% dose level, we further set a new bench-
mark with PSNR of 43.08 dB and SSIM of 0.9652, outperforming all all-in-one
competitors.

For PET reconstruction tasks on the Bern and UI datasets, TUF exhibits
exceptional robustness under extreme low-dose conditions (5% dose level), at-
taining 39.76/0.943 (Bern) and 36.49/0.866 (UI) (see Table 2), which exceed the
second-best method (CLIP) by 1.63 dB and 1.2 dB, respectively. Our method
advances medical imaging by effectively restoring anatomical details and sup-
pressing noise artifacts, as evidenced in Fig. 2. Quantitative metrics and visual-
izations confirm that our framework not only generalizes across modalities and
dose levels but also addresses the high-precision demands of clinical scenarios,
establishing a new technical benchmark for all-in-one low-dose medical image
reconstruction.

https://ultra-low-dose-pet.grand-challenge.org
https://ultra-low-dose-pet.grand-challenge.org
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Fig. 2. Visual and quantitative comparisons of TUF against 4 competing models on
the LDCT and total-body LDPET datasets.

3.3 Single-task experiment results

To assess the effectiveness of TUF in specialized reconstruction scenarios, we fur-
ther evaluate it in single-task settings, comparing its performance against recent
state-of-the-art methods developed for single-task reconstruction. On the Mayo-
2016 CT dataset, the proposed TUF achieves PSNR of 43.09 dB and SSIM of
0.967 (see Table 3), surpassing CoreDiff (41.27/0.958) and UNAD (41.28/0.958)
by 1.82 dB and 1.81 dB, respectively. For the Bern dataset under extreme low-
dose conditions (5% dose), the TUF attains 40.56 dB PSNR and 0.959 SSIM,
outperforming 3D DDPM (37.61/0.898) by 2.95 dB and WF-Diff (38.04/0.912)
by 2.52 dB (see Table 3). These results demonstrate consistent superiority across
diverse modalities (CT and PET) and dose levels, highlighting its adaptability
to specialized clinical reconstruction tasks.

3.4 Ablation Studies

We conduct systematic ablations to validate the contributions of key compo-
nents in the TUF framework. As shown in Table 4, removing the TIGA module
degrades the performance of TUF by up to 0.96 dB PSNR on the UI dataset (5%
dose), highlighting its critical role in low-dose feature enhancement. Omitting the
WKAN-UNet backbone reduces reconstruction quality across all scenarios, par-
ticularly under 20% CT dose (PSNR drops from 33.04 to 32.71), confirming its
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Table 3. Reconstruction results in the single-task setting on Mayo2016 and Bern 5%
dose datasets.

Mayo2016 Dataset

Method LDMANet [21] CoreDiff [5] UNAD [7] RDDM [10] TUF (Ours)

PSNR 40.89 41.27 41.28 41.12 43.09
SSIM 0.956 0.958 0.958 0.949 0.967

Bern 5% Dose Dataset

Method DDPM [6] WF-Diff [22] AMIR [17] 3D DDPM [19] TUF(Ours)

PSNR 38.20 38.04 37.88 37.61 40.56
SSIM 0.914 0.912 0.901 0.898 0.959

Table 4. Ablation experiments of TUF on mayo and UI datasets.

Models CT-dataset UI-dataset

20% 25% 5% 10%

TUF 33.04/0.795 43.08/0.965 36.49/0.866 38.43/0.895

Ablation for Modules
TUF w/o TIGA 32.61/0.789 42.60/0.963 35.53/0.852 37.80/0.890
TUF w/o WKAN-UNet 32.71/0.791 42.77/0.965 35.59/0.854 37.94/0.884
TUF w/o frequency stream 32.83/0.797 42.86/0.966 35.73/0.851 38.07/0.888

Feedforward Type
TUF w/ MLP 32.44/0.787 42.35/0.966 35.87/0.852 37.61/0.879
TUF w/ KAN 32.33/0.782 42.52/0.966 35.94/0.849 37.79/0.889

WKAN layer number
TUF w/ 1 32.94/0.798 43.03/0.966 36.22/0.869 38.39/0.894
TUF w/ 3 32.99/0.795 43.05/0.966 36.38/0.867 38.44/0.896

effectiveness in multi-scale modeling. The frequency stream further contributes
to artifact suppression, as evidenced by a 0.76 dB improvement on the Bern
dataset. Comparisons of feedforward types demonstrate that our WKAN layers
outperform MLP and KAN by 0.6–0.8 dB, while experiments on layer depth re-
veal that two WKAN layers achieve an optimal balance between complexity and
performance. These results collectively validate the necessity of each proposed
component in TUF.

4 Conclusion

This study presents the TUF to address the generalization challenges of ex-
isting LDCT and LDPET reconstruction models, particularly across varying
dose levels, device specifications, and anatomical variations. By integrating a
novel cold diffusion sampling process with a dual-domain fusion network, TUF
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dynamically adapts its reconstruction strategies through input-driven feature
analysis and textual guidance, eliminating the need for prior noise characteriza-
tion. Extensive evaluations across multiple datasets demonstrate the framework’s
effectiveness, achieving significant performance improvements in both LDCT
and LDPET tasks. TUF not only surpasses current state-of-the-art methods in
terms of PSNR and SSIM, but also outperforms both all-in-one and single-task
approaches by substantial margins. These results underscore TUF’s potential
for broad clinical deployment, offering a powerful solution for low-dose medical
imaging that enhances diagnostic accuracy while reducing radiation exposure.
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