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Abstract. A generative model for the mesh geometry of intracranial
aneurysms (IA) is crucial for training networks to predict blood flow
forces in real time, which is a key factor affecting disease progression.
This need is necessitated by the absence of a large IA image datasets.
Existing shape generation methods struggle to capture realistic IA fea-
tures and ignore the relationship between IA pouches and parent vessels,
limiting physiological realism and their generation cannot be controlled
to have specific morphological measurements. We propose AneuG, a two-
stage Variational Autoencoder (VAE)-based IA mesh generator. In the
first stage, AneuG generates low-dimensional Graph Harmonic Deforma-
tion (GHD) tokens to encode and reconstruct aneurysm pouch shapes.
GHD enables more accurate shape encoding than alternatives. In the
second stage, AneuG generates parent vessels conditioned on GHD to-
kens, by generating vascular centerline and propagating the cross-section.
TA shape generation can be conditioned on specific clinically relevant
shape measurements, enabling controlled studies on how morphological
variations impact flow behaviors. Additional, our novel Morphing En-
ergy Alignment constraint and Morphological Marker Calculator improve
generation fidelity and controllability. Source code and implementation
details are available at https://github.com/anonymousaneug/AneuGl

Keywords: Intracranial Aneurysms - 3D Shape Generation.

1 Introduction

Intracranial aneurysm (TA) is a vascular disease where a weakness in the vascular
wall causes a bulge, which carries risks of severe consequences if it ruptures.
With advancements in imaging technology, IAs are increasingly detected, with
a prevalence of up to 8% [1I]. The prediction of rupture risk is currently difficult
[2], but the TA morphological shape and the consequent pattern of blood fluid
forces on the IA pouch are thought to influence it [3]. As such, it will be useful
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to develop neural networks for rapid prediction of flow dynamics in IAs, for use
in large clinical data testing of predictive power of fluid dynamics features, and
if successful, for subsequent use as a clinical tool to predict rupture risks. To
train such a network [4], a large dataset of morphologies is necessary, but this is
not readily available, necessitating shape generation.

Unfortunately, existing models for synthesizing IA geometries are not yet ro-
bust. First, they do not model the joint distribution of IAs and their parent vessel
geometries. Instead, they either adopt idealized vessels to merge with generated
IA pouches [6] or merge real TAs to healthy parent vessels from other individuals
[7]. Secondly, some models generate TA pouches via manual deformations [8], but
this is not data-driven and results may be unrealistic.

Third, the ability to control the generated IA geometries to achieve specific
clinical morphological parameters remains an unmet need. Such controls will
allow us to generate shape cohorts with clinically relevant statistics, and under-
stand shape variability within specific clinical measurements. It will also enable
the generation of realistic geometries that vary only in specific shape features
while keeping all other features constant, which would be invaluable for studies
aimed at understanding the effects of individual morphological features on ITA
fluid mechanics. Current generation models have not achieved this. Past works
have been limited to selecting shapes from cohorts in an uncontrolled manner

[9TOITT] or relying on non-physiological synthetic shapes [6/12].
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Fig. 1. Overview of AneuG.

To address these unmet needs, we propose a two-stage conditional generation
model, AneuG. In the first stage, the model generates the TA pouch and regions
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immediately surrounding it — referred to as the aneurysm complex—conditional
to having specific values for certain clinically relevant morphological parameters.
In the second stage, the parent vessels are generated, conditional to features
of the generated aneurysm complex. Both stages employ shape encoding and
approximate the latent distributions using a Variational Autoencoder (VAE).
This enables accurate reconstruction of 3D shapes with a relatively small dataset,
which is challenging for mainstream diffusion-based shape generators [15].

Our main contributions are: (1). We introduce AneuG, the first deep genera-
tive model for 3D TA meshes that simultaneously models the aneurysm complex
and its parent vessels (that are sufficiently long for fluid mechanics investiga-
tions), with the latter conditioned on the former to ensure anatomical realism.
(2). AneuG enables shape generation to specific clinically relevant morphologi-
cal parameters via training with a differentiable Morphological Marker Calcula-
tor (MMC), allowing downstream controlled studies of how morphology affects
hemodynamics. (3). We leverage Graph Harmonic Deformation (GHD) for shape
encoding, capturing detailed local shape features. (4). We propose a Morphing
Energy Alignment (MEA) constraint to enhance the generation fidelity. This is
particularly necessary for conditional generation where fidelity becomes weaker.

2 Methods

2.1 Problem Statement and Overview

The schematic of our method is shown in Fig. [Il We aim to generate synthetic
aneurysm meshes conditioned on specific values of certain clinical morphological
markers A, supervised by a cohort of aneurysm shapes reconstructed from MRI.
This process is accomplished with a two-stage VAE architecture.

In the first stage, the aneurysm complex undergoes shape feature encod-
ing, in the form of GHD tokens, through a morphing process (see Section .
Shapes generated by the unconditional VAE are used to estimate distributions of
morphological parameters, which are then used for conditional generation. This
ensures a physiologically realistic decoder that understands the conditional prob-
ability distributions when multiple parameters are involved. During training, a
differentiable Morphological Marker Calculator (MMC) is used to compute the
MSE loss, Lcond, to ensure specified morphology parameters match generated
ones. Additionally, we calculate the morphing energies of reconstructed shapes
and align their distribution with that of real shapes (see Section [2.3]).

In the second stage, we generate the centerlines of parent vessels conditioned
on the aneurysm complex shape. Similar to stage one, we encode shape features,
this time with Fourier tokens. To ensure IA pouch to vessel shape continuity,
we compute the tangent vectors of the generated centerlines and constrain them
to match that of vascular stubs on the aneurysm complex (red arrows in Fig.
a)) via Lipeg, the MSE between the two. Finally, we propagate nodes of the
connection cross-sections along the generated centerlines and merge them with
the aneurysm complex to obtain the final mesh. For the merging, vascular stubs
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on the stage I TA complex are first clipped, and the resulting cross-sections are
propagated along the stage II centerline, with algorithmic insertion of additional
triangle elements at the interface. Further details are provided in the codes.

2.2 Shape Encoding

We encode the 3D aneurysm shapes and their parent vessels before feeding them
into VAEs. For the aneurysm complex, we apply the Graph Harmonic Defor-
mation (GHD) method (surface Fourier basis), as it offers smoothness without
regularization and can better capture local geometry than coordinate-based mor-
phing or PCA [16]. A set of scalar tuples ¢; = (¢iz, @iy, ¢iz), refered to as GHD
tokens, can be found by morphing a canonical mesh M¢ (defined by nodes V.
and faces F.) into a target mesh M" through gradient descent (see Fig. (1| a):

¢ = argmcgn»CGHD [M (V = ; Ui - ¢iafc>7Mt:| (1)

where V. and F. denote the mesh node coordinates and triangle faces of the
canonical shape. U; is the ith eigenvector of the canonical mesh’s cotangent graph
Laplacian. We truncate the number of eigenvector modes to a small number n.
Laup is the loss function evaluating the distance between the warped canonical
mesh and the target mesh. We follow the design in [I6] and add additional
Chamfer Distance constraints on vessel cross-sections to guide the morphing
process. Further details are in the GHD citation [16].

For the parent vessels, we encode their centerlines in a similar way. We
model the vessel branches as warped beams constructed with sine functions
shape modes, ¥, and corresponding amplitudes, ¢ [23]. The centerline function
of parent vessels in the global coordinate system is therefore expressed as:

Li = Rac(Vi) - [Th, Gk = 2o 00 Vi 2k = D #; '%‘k]T +ci (2)

wz(i'k) = Sin(iw/lk * i’k), T e [0, lk] (3)
where k represents the branch index, ¢ and j are beam mode indices, and [
the unwarped beam length. vj is the normalized direction vector of the branch
(from start to end) that parameterizes the rotation matrix Ry from the local
to global coordinate system. The transition cj is equal to the coordinate of the
vessel cross-section center. An example of a fitted case is visualized in Fig. [T] a.

2.3 Stage I training

We train a VAE to model the distribution of GHD tokens ¢. Synthetic aneurysm
complex meshes M are conditionally reconstructed with ¢ sampled from the
approximated posterior distribution ¢ (¢ | z, A):

~—

MaM<vZUi~¢i,fc> (4
i=1
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The reconstruction loss term consists of the MSE loss of GHD tokens and
the Chamfer Distances between the real and reconstructed shapes.

Morphing Energy Alignment: To mitigate the limitations of a small
training dataset, we incorporate additional information into the VAE training
process. Our hypothesis is that generated shapes, if they closely resemble real
shapes, should exhibit a similar population distribution of morphing energies
(from canonical to target mesh) as the real shapes. In this work, we utilize
rigidity energy F, as defined in [I7] and Laplacian smoothness E; as described
in [I8]. Shapiro—Wilk tests conducted on our training dataset reveal that both
energy distributions are normal. Based on this observation, we sample from the
encoded distribution of real shapes during training and generate corresponding
synthetic shapes, compute their morphing energies, and align their distributions
with those of the real shapes through KL divergence:

Lypa = ZDKL (N (e, (o7°)2) | N (3, (077)%) ()

where u and o2 are population mean and variance of morphing energies (i €
{Ey, E;}) computed on real / synthetic shapes.

Morphological Marker Calculator (MMC): Leveraging on the mesh-
preserving nature of GHD, our method enables consistent registration between
different aneurysm complexes. This allows easy differentiable calculation of mor-
phological markers from the mesh. Markers calculated include neck width (NW),
aspect ratio (AR), and a novel lobulation index (LI)—defined as dome surface
area divided by volume. Dome volume is further computed by closing the mesh
and applying the discrete Gaussian theorem. We use the MMC to estimate the
multivariate distribution of morphological conditions from synthetic shapes gen-
erated by an unconditional stage-I VAE. This avoids unrealistic combinations
like concurrently high AR and NW.

2.4 Stage II training

We train another VAE to generate parent vessels. Synthetic centerlines are re-
constructed through sampling from the distribution of Fourier mode coefficients
@ defined in Eq. (2), the direction vector of the vessel branch v (with respect to
the tangent vector t. at the vessel cross-section), and the branch length I:

4 ({00} | z,0) (6)

where the decoder inputs are the parameterized [A complex generated in stage I
(condition) and vessel latent representation, ¢ and z, respectively. We then prop-
agate the cross sections of the aneurysm complex along the synthetic centerlines
to create tubular meshes and merge them with the masked aneurysm complex
mesh to obtain the final mesh. The reconstruction loss consists of MSE losses
on tokens and centerlines points. We also conduct spatial differentiation of the
reconstructed centerlines and force their tangent directions at the connections
to the aneurysm complex to match ..
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Table 1. Evaluation of unconditional generation. 1: larger value is better; |: vice versa.
Bold metrics: best performance among methods. *: Trained with MEA. C' D, is shown
in 1074, while CD,, is shown in 1072,

Model FPDJ KPDJ TMDT CD, | CD, |
AneuG* | 6.06 £0.34 | 1.10 £ 0.12 | 5.8 £0.09 | 1.88 £ 0.08 | 3.63 & 0.08
AneuG | 822+£1.01 | 2324042 | 490£0.16 | 1.95+0.10 | 3.53 +0.16
PCA | 1352+0.15 | 7.78 £0.54 | 6.45+0.21 | 88.33 £ 2.21 | 52.87 + 0.64
Diffusion | 45.18 = 1.71 | 62.33 £ 5.23 |25.48 & 1.95| 10.93 + 0.31 | 124.57 & 0.19

3 Experiments

Dataset. We use the the largest publicly available TA dataset, AneuX, to eval-
uate our model. As we are focussing on IA located at the middle cerebral artery
bifurcation in this work, we extracted 116 IAs within AneurX of this nature for
training. Ground truth vascular centerlines were extracted with VMTK.

Metrics. Following [13], we adopt Fréchet PointNet++ Distance (FPD) and
Kernel PointNet++ Distance (KPD) using a pre-trained PointNet++ to evalu-
ate fidelity of generated latent space distribution. We follow [20] and use Total
Mutual Difference (TMD) to evaluate the diversity. For VAE reconstruction
evaluation, we use Chamfer Distance on mesh nodes (CD,) and face normals
(CD,,). CD, and TMD are measured in mm?, other metrics are unitless. For
conditioning accuracy (CA), We use the relative L2 error on recalled conditions.

Unconditional Shape Generation Performance. Unconditional gener-
ation results are presented in Table [I] We compared our AneuG to a generator
based on a node-wise Principal Component Analysis (PCA) statistical shape
model (using 15 modes) [14], which is a prevailing biomedical shape model in the
literature, and a deep learning Diffusion shape generator. The Diffusion model is
composed of a VAE trained on the occupancy field of aneurysm complexes and a
transformer UNet-based latent diffusion network [I5], but is without image/text
conditioning. Further details can be found in our codes. The results indicate that
AneuG achieves superior generation fidelity and reconstruction accuracy relative
to baseline methods. Results are visualized in Fig. |2| a-b, where it is observed
that AneuG produces smooth and refined surface meshes, even with only 116
training data, whereas the diffusion model fails to achieve comparable quality.
We also observe that PCA achieves smooth generation but fails to capture lo-
cal features on the aneurysm pouches. These results justify the use of GHD in
our approach, which enables AneuG to capture more local features. We further
requested a neuroradiologist rank the shape generations from competing mod-
els on how realistic they look. AneuG with MEA ranked highest, while AneuG
without MEA ranked highest in diversity.

Ablation studies of MEA and MMC. Conditional generation experi-
ments are conducted to quantify the contributions of MEA and MMC. While
Table [I] indicates that MEA provides only a marginal improvement in gener-
ation fidelity in the unconditional scenario, its impact is more substantial in
conditional settings. The performance gap across condition setups in Table [2]
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Table 2. Conditional generation evaluation. AR: Aspect ratio. NW: Neck width. LI:
Lobulation index. V: Dome volume. Bold metrics: best performance for each setup.

*: Trained with MEA. {: Trained with MMC. Other details as per Table

Condition FPDJ KPDJ TMDT CA(%) [CD,[CD. |
AR 14.88£0.76 | 11.21 £0.38 | 3.83£0.03 | 8.72+0.23 | 2.79 | 4.02
AR* 9.54+0.27 | 4.284+0.31 | 4.39+0.13 | 9.30+£0.40 | 1.73 | 3.51
AR*! 7.86 & 0.49 | 2.78 + 0.07 | 4.56 + 0.10 [ 2.93 +0.14 | 2.11 | 3.89
NW 1241£0.70 | 927+£088 | 410+0.13 | 3.35+0.17 | 2.61 | 3.45
NW* 10.50 £ 0.46 | 4.66 £0.21 | 4.434+0.12| 3.68+0.04 | 1.95 | 3.48
NWwW* 8.48 4 0.23 | 4.07 £ 0.46 | 4.47+£0.01 {1.80+0.04| 3.95 | 3.69
AR+NW |12.56+0.80 | 8.35£0.66 | 4.44£0.03 | 5.88 £ 0.28 | 2.97 | 4.40
AR+NW* | 11.13+0.95 | 5.484+0.30 | 4.27+0.16 | 6.93+0.59 | 2.71 | 5.12
AR+NW*110.24+0.44| 4.22 + 0.32 | 4.06 + 0.07 | 2.78 + 0.18 | 2.06 | 4.27
LI 17.94 £0.60 | 21.68 £ 0.68 | 3.75 £ 0.11 | 11.49 £+ 0.60 | 17.18 | 20.56
LI+V* 13.20+0.36| 6.79 +0.58 | 4.01 £0.11 | 12.91 +0.52 | 4.68 | 8.60
LI+ V* 15.16 £ 0.65 | 9.22+0.52 | 3.13+0.16 | 3.19+0.29 | 4.52 | 8.18

can be attributed to limited data. With limited samples, using more conditions
makes the training harder. Table [2| demonstrates that incorporating MEA con-
sistently enhances generation fidelity under all condition configurations. This
improvement can be attributed to MEA mitigating posterior collapse during
conditional training in the first stage, which otherwise reduces the preservation
of shape structures and leads to a misaligned morphing energy distribution. By
ensuring alignment of the morphing energy distribution with the dataset, MEA
helps AneuG maintain more structural details. MMC demonstrates increased
conditioning accuracy across all experimental configurations, with a minor im-
provement in generation fidelity observed in most cases. However, using MEA
and MMC increases training time from ~1h to ~4h on one RTX 3090 GPU.
(Up to 5 concurrent runs can be performed within the same training time.)
Application. By encoding a real shape and fixing the latent code while
varying the condition variable, we can morph it to varying morphological pa-
rameters. In Fig. 2] e, we demonstrate that increasing AR incrementally results
in a higher aneurysm dome. In Fig. [2 f, we show that by holding the volume of
the real shape constant, but increasing lobulation index, a daughter sac can be
created, which is a marker of TA rupture risk [2]. Additionally, Fig. [2g shows the
model’s ability to generate long vascular inlets and outlets, which is necessary
for downstream biofluid mechanics simulation studies as they strongly influence
fluid dynamics. We performed flow simulations using Ansys Fluent [22] and found
that higher TA aspect ratio (AR) causes increased areas of low wall shear stress
(WSS), while the presence of a daughter sac causes more complex and chaotic
flow. This corroborates prevailing thinking: these flow features are considered
mechanical stimuli that can cause adverse biological responses [3], while these
morphology features are understood to be markers for disease progression and
rupture risks [2I]. Our simulation results also align with clinical observations
linking large AR to higher rupture risk, as increased low-WSS regions appear
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on the aneurysm pouch (generally considered dangerous) [3]. These applications
show how AneuG’s conditional morphing enables future larger scale studies to
better understanding how IA biomechanics influence rupture risk.

4 Conclusion

In this paper, we propose a conditional generation model for intracranial aneurysms.
The model captures the joint distribution of aneurysm complexes and their par-
ent vessels, providing a novel solution to this field. The proposed method outper-
forms the main-stream diffusion model with limited data and therefore highlights
its applicability to rare cerebral aneurysm complexes. However, several limita-
tions remain. First, the dataset used for training is relatively small, limiting the
diversity and fidelity of generated shapes, particularly under strict morphologi-
cal conditioning. Second, only bifurcation-type IAs are included. Third, human
evaluations were based on a single neuroradiologist, a larger panel of review-
ers will strengthen confidence of the visual realism evaluation. Future work to
address these limitations is warranted. Other future research direction include
temporal conditioning with longitudinal data to model disease progression and
leveraging the shape knowledge in AneuG to synthesize images.

Disclosure of Interests. The authors declare no competing interests.
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