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Abstract. MR imaging techniques are of great benefit to disease diag-
nosis. However, due to the limitation of MR devices, significant intensity
inhomogeneity often exists in imaging results, which impedes both qual-
itative and quantitative medical analysis. Recently, several unsupervised
deep learning-based models have been proposed for MR image improve-
ment. However, these models merely concentrate on global appearance
learning, and neglect constraints from image structures and smoothness
of bias field, leading to distorted corrected results. In this paper, novel
structure and smoothness constrained dual networks, named S2DNets,
are proposed aiming to self-supervised bias field correction. S2DNets in-
troduce piece-wise structural constraints and smoothness of bias field for
network training to effectively remove non-uniform intensity and retain
much more structural details. Extensive experiments executed on both
clinical and simulated MR datasets show that the proposed model out-
performs other conventional and deep learning-based models. In addition
to comparison on visual metrics, downstream MR image segmentation
tasks are also used to evaluate the impact of the proposed model. The
source code is available at:https://github.com/LeongDong/S2DNets.
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1 Introduction

Bias field, as an unavoidable challenge in MR image processing tasks, is caused by
imperfect MR devices or imaged objects, which introduces intensity inhomogene-
ity into MR images and compromises subsequent medical analysis methods|1][2].
In the past decades, various of methods had been proposed to deal with bias field,
including histogram- [3][1], segmentation- [5]-[9] and deep learning-based meth-
ods [10]-[18]. Smoothness constraints, which describes the fundamental charac-
teristics of bias fields, has been widely adopted in numerous methods [3][4][6]-[9]-
As bias field varies smoothly in low frequency, Sled et al. [3] proposed N3 method
for bias field correction by iteratively maximizing high frequency within tissues.
Tustison et al. [4] improved N3 to obtain more effective method named N4.
Mishro et al. [5] pointed out that the fuzzy clustering can be used to lower the
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Fig. 1. Contributions and framework of proposed model.

effect of bias field. Li et al. [8] applied low-order polynomial functions to fit
smoothly varying bias field. However, it is limited in describing the bias field
with complex distribution. Ma et al. [30] bypassed explicit modeling of bias field
smoothness but instead employed a global hard threshold on image gradients
to preserve structural edges for sparse reconstruction. However, due to the lack
of smoothness constraints on the bias field, it suffers from an inherent inabil-
ity to simultaneously resolve the conflict between suppressed weak edges in the
restored image and retained spurious gradients arising from bias field artifacts.
Some researchers adopted level-set or Ly regularization into the bias field esti-
mation framework[6] [9]. However, these methods rely on manual initialization
and cannot be executed automatically.

Nowadays, deep learning-based methods have achieved remarkable perfor-
mance in bias field correction tasks. Compared to traditional algorithms, deep
learning-based methods offer significant advantages: 1) its end-to-end optimiza-
tion enables data-driven learning of complex bias field distributions; 2) it pro-
vides superior inference efficiency; and 3) it demonstrates enhances generaliza-
tion capability, maintaining robustness against intensity variation. Both Gold-
fryd et al. [10] and Chen et al. [11] adopted GANs model for bias field estimation
in a supervised learning scheme. Other GANs-based models like Residual Cy-
cleGANs [12] and IRNet [13], resorted to learning on unpaired data. However,
unpaired clean data is usually absent in clinical practice. Thus, some researchers
tried to train network without any clean data as reference. ImplicitNet [14],
BECNN [15] and DeepN4 [17] chose to generate artificial bias field as ground



S2DNets: MR Bias Field Correction 3

truth. However, if the generated result differs from the real data, these models
would be degraded significantly. Yang et al. [16] adjusted the image intensity as
ZeroDCE++ [19] but it is more suitable for natural image instead of MR image
because of different imaging mechanism. Perez-Caballero et al. [18] introduced
entropy minimization into network. However, it is hard to find a balance between
bias field removal and image structure preservation.

To deal with above problems, we propose a novel self-supervised framework
for bias field correction, called structure and smoothness constrained dual net-
works (S2DNets). To this end, we adopted structure constraint to describe fea-
tures of clean MR image and smoothness constraint to regularize the spatial
distribution of bias field, and combine them into a unified objective function.
Losses are obtained by solving closed-form solutions of objective function so as
to effectively estimate bias field and retain structural details of corrected results
as much as possible. S2DNets consist of two sub-networks to predict piece-wise
constant structure information by fuzzy clustering and estimate bias field, re-
spectively. Inspired by [20]-[22], two sub-networks alternately learn from each
other in a self-supervised dual manner. As shown in Fig. |, contributions can be
summarized as: a) We propose a novel self-supervised framework called S2DNets
for bias field correction. S2DNets introduces a unified objective function by com-
bining structure and smoothness constraints together so as to effectively remove
bias field and preserve structural details of corrected results; b) Extensive exper-
iments conducted on both clinical and simulated dataset demonstrate evident
advantages of S2DNets compared with other state-of-the-art methods.

2 Method

Our S2DNets aim to estimate bias field from corrupted MR image. Firstly, the
relationship among bias field, corrupted image and clean image is described
mathematically, based on which a unified objective function is constructed by
incorporating structure and smoothness constraints. Then, closed-form solutions
on bias field and clustering are derived from the objective function, which is
used to design loss functions for guiding network training. Finally, the details
for network architecture is provided.

2.1 Objective Function for Bias Field Estimation In most research [1] [2],
the relationship between the original MR image and corresponding bias field can
be mathematically described in a simple multiplicative form as:

I(r) =i(r)b(r) + n(r),vr € 2 (1)

where (2 is image domain, r denotes the location in the {2, I(-) is the acquired
MR image, i(-) is the corresponding clean MR image without bias field, b(-)
represents the bias field, and n(-) is the noise, which could be estimated by
quasi-Gaussian functions. As image background often contains irrelevant signals,
it may introduce interference for bias field estimation, leading to over-corrected



4 D. Liang et al.

results [3]. Thus, in this work, we adopt a multi-threshold OTSU (MOTSU) [206]
to automatically determine the foreground area as:

1, if I(r) > min(MOTSU(I, M))

0, otherwise

mask(r) = { (2)
where MOTSU(-) outputs computed thresholds, I is acquired MR image, M is
the number of threshold, default by 3. min(-) is the function return the mini-
mum value. For that bias field varies smoothly across the whole imaged object,
the closer two points are, the more likely they have the same bias field value.
Thus, the probability that two points r and s have the same bias field value is
approximated by a masked Gaussian kernel K (r,s) as:

1 _(r=s)? .
22 if lr—s|<d, r,se

mask(r) - mask(s) - e
K(r,s) = oV2m

0, otherwise

where K(r, s) is re-normalized as K(r,s) = K(r,s)/ [ K(r,s)ds, and d is prede-
fined distance, o controls the shape of probability distribution. For a clean MR
image, intensity distribution is assumed to be piece-wise constant [11]. Thus,
pixels with similar intensity can be classified into same cluster by clustering
method, and the intensity of each pixel can be conversely approximated by cor-
responding cluster center. Inspired by fuzzy clustering method|[5], an objective
function is proposed based on Eq.! and Eq.3 as:

N Ne
; — p 2 —
min £ = /;/K(r,s)ui ($)|1(s) = b(r)ei| dsdr,s.t.;ul(s) =1 (4
where r,s € 2, N is the number of cluster centers with different gray distri-
butions, which is same to the variable N in Eq.2. K(r,s) describes the local
smoothness of bias field. w;(s) represents the probability that the sth pixel is
classified into the ith cluster, and ¢; is ith cluster center. p is fuzziness factor.
uf ()]|1(s) — b(r)c;||? restricts the corrected result to satisfying the structural
constraints that clean MR image is piece-wise constant. For a certain pixel, the
sum of probabilities belonging to each cluster is equal to 1.

2.2 Closed-form Solutions and Loss Functions Objective function is min-
imized to estimate the appropriate bias field so as to ensure the smoothness of
bias field and preserve structural details of corrected image. Closed-form solu-
tions are acquired by calculating the first derivative equaling zero on variables
u;(r), ¢; and b(r), respectively, as:

[ [ K(r,s)b(r)I(s)ul (s)dsdr

i = i 5
‘ J [ K (r,s)b2(r)ul (s)dsdr (5)
() L “
u(r) =
' N () —c: [ K(rs)b(s)ds|[2 \ 1
Zjzl(||I(7”)—C_7‘fK(r,s)b(s)ds||2)
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oL Zf\;l J K(r,s)c;I(s)ul (s)ds
b(r)= N 2, D
dim1 f K(r,s)ciuj (s)ds

where u;(r) and b (r) are reconstructed probability and bias field, respectively.
For training clustering part, the probability map reconstruction loss function
Lossys is calculated between predicted probability map v and reconstructed
probability map u’ (see Eq.0.) as:

(7)

N ’
Lossciys = Zl /Q [|u; (r) — ui("")szT ®)

For training bias field estimation part, the bias field reconstruction loss function
Losspiqs 18 calculated between predicted bias field b and reconstructed bias field
b (see Eq.7.) as:

Lo8Spins = /Q 115 (r) — b(r)|[2dr )

As K (r, s) only focus on the local smoothness, we propose total variation loss to
further introduce the global smoothness constraints of bias field, as:

Lossty = /Q[azb(r) + 8§b(r)]dr (10)

where 0,(-) and 0,(-) are first-order partial derivative along x-axis and y-axis,
respectively. The total loss for training bias estimation network is:LossSpies +
ALossty, A is weight for controlling global smoothness of bias field.

2.3 Network Architecture S2DNets adopt two encoder/decoder pairs to es-
timate probability map u and bias field b, respectively. As shown in Fig. 1, the
proposed model is composed of two parts: a clustering part for predicting the
probability of every pixel belonging to each cluster, and a bias estimation part
for calculating the bias field, which are all based on the same structure as ba-
sic U-Net in [23]. The difference is that the clustering part adopts the Softmax
function to predict the probability map, and the bias estimation part applies the
Sigmoid function to restrict the range of bias field in the last output layer.

3 Experiment

3.1 Datasets Experiments are conducted on the clinical dataset HCP[24] and
simulated dataset BrainWeb|[25]. In HCP dataset, 30000 T1w slices with size
260 x 311 were randomly split into 15000,/15000 for training/test set. The Brain-
Web dataset contains T1 and T2 slice with size 217 x 181. In BrainWeb, bias
field is simulated with strength randomly re-scaling to [0.3,1.7] by Legendre
polynomials as [11] where 2000/1810 slices were created for training/test set.
Center-cropping and zero-padding are used to set the slice size into 256 x 256.
Random flipping and rotation are applied for data augmentation.
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3.2 Implementation Details Our proposed network is trained by an Adam
optimizer for 1500 iterations with batch size 4 and initial learning rate is set
to 0.001 decayed by 0.999 every iteration. To balance the weight between local
and global smoothness constraints, A = LL";’# is adaptively adjusted during
training process. The network is based on Pytorch by NVIDIA 2080Ti.

Our model is compared with two most widely applied models (i.e., N4 [4]
and MICO [3]); four unsupervised models: Residual CycleGAN (abbrev. RC-
GAN) [12] and IR-Net [13], Implicit [14] and Yang [16]). For training different
models, training sets are further randomly splitted into 10000/5000 in HCP
and 1810/190 in BrainWeb for corrupted input data and unpaired clean data.
Implicit, Yang [16] and our S2DNets are trained without any clean data as ref-
erence. RCGAN and IRNet are trained with additional unpaired clean data. All
codes are executed according to their corresponding literature.

Table 1. Quantitative fidelity comparisons (mean/standard deviation) with Wilcoxon-
test between proposed and other methods on both HCP and BrainWeb dataset.

HCP BrainWeb T1 BrainWeb T2

Methods  —5oNRF— SSINT — PSNRT  SSIMT  PSNRT  SSIMT

Original ~ 19.88/8.65% 0.897/0.084% 23.07/3.49% 0.920/0.038% 20.50/3.32% 0.895/0.042°
MICO 19.60/8.08* 0.898/0.092% 19.42/3.33* 0.829/0.077% 16.53/3.11% 0.744/0.089}
N4 22.22/8.27% 0.932/0.068* 24.45/4.03% 0.939/0.037* 21.10/3.92% 0.909/0.041*
Implicit ~ 22.49/5.26 0.893/0.067* 15.94/3.42* 0.637/0.103* 16.87/1.19* 0.732/0.045*
Yang et al. 23.54/6.60% 0.914/0.054* 25.08/3.15% 0.947/0.028* 22.07/3.31* 0.927/0.029*
RCGAN  25.39/3.26% 0.950/0.025% 24.52/4.90% 0.901/0.060* 23.37/4.55% 0.880/0.139*
IRNet 28.80/6.69* 0.979/0.021 30.95/4.65% 0.975/0.023* 29.82/2.80% 0.977/0.011*

S2DNets* 25.87/5.56% 0.968/0.020% 27.02/3.63% 0.962/0.032% 26.42/2.66% 0.951/0.030*
S2DNets  28.40/4.98 0.979/0.015 31.78/4.60 0.979/0.024 30.98/3.49 0.969/0.024

1:p—walue < 0.01;1 : p — value < 0.05; % : S2DNets without TV loss

3.3 Parameter Setting Fuzziness factor p is generally set to 2 as [5], which is
suitable for most of clustering tasks [27]. Duan et al. [9] also modeled the local
smoothness of bias field by Gaussian Kernel and pointed out that kernel size in
17 x 17 can deal well with both severe and light intensity inhomogeneity. Besides,
they provided the relationship between kernel size d and sigma as: d < 4 xo+1.
Thus, in our experiments, fuzziness factor p, kernel size d and shape factor o are
set to 2, 17 and 4, respectively. Cluster number N is much more important to
influence corrected results. We initialize N = 2, and gradually increase it by 1
to find appropriate value 4 as Fig 2 shown.

3.4 Experimental results A well-established bias field correction method must
meet two essential criteria: 1) the corrected image should maintain sufficient



S2DNets: MR Bias Field Correction 7

32

304

28
x
526—

24

224

20 T T T T T T 0.08
2 3 4 5 6 7

RIS
a{e e a

Fig. 2. The performance of proposed model on HCP, BrainWeb T1, T2 datasets with
different N values.

structural details, while ensuring that the intensity distribution aligns with cor-
responding clean image, as measured by Structural Similarity (SSIM) and Peak
Signal Noise Ratio (PSNR); 2) the non-uniform intensity within tissues or or-
gans should be effectively corrected, which can be evaluated by Coefficient of
Variation (CV). Table | shows the SSIM and PSNR comparison, while Table
presents the CV value for white matter (WM) and grey matter (GM).

Table 2. Coefficient of variation (mean/standard deviation) with Wilcoxon-test be-
tween proposed and other methods on both HCP and BrainWeb dataset.

HCP BrainWeb T1 BrainWeb T2

Meth
ethods  — g T OVl Vol Vel Vamd  CVwarl

Original ~ 0.254/0.068% 0.194,/0.080F 0.240/0.062% 0.210/0.074F 0.283/0.054% 0.224/0.073*
MICO 0.136/0.044* 0.075/0.026% 0.201/0.056* 0.162/0.062* 0.244/0.046* 0.186/0.068*
N4 0.138/0.057* 0.077/0.026% 0.169/0.054* 0.138/0.061* 0.220,/0.042* 0.148/0.062*
Implicit ~ 0.094,/0.063% 0.062/0.052% 0.130/0.035% 0.089/0.023* 0.121/0.007* 0.098/0.046*
Yang et al. 0.137/0.048% 0.094/0.048% 0.186/0.049% 0.158/0.057* 0.237/0.041* 0.174/0.058*
RCGAN  0.224/0.527* 0.127/0.219% 0.148/0.031% 0.091/0.036" 0.261,/0.045 0.150/0.055*
IRNet 0.155/0.079* 0.093/0.061% 0.147/0.054* 0.117/0.069* 0.198/0.024% 0.100/0.034*

S2DNets* 0.129/0.056 0.058,/0.047% 0.113/0.055% 0.072/0.017F 0.181/0.022 0.080/0.025%
S2DNets  0.131/0.057 0.063/0.048 0.120/0.057 0.083/0.023 0.180/0.018 0.090/0.025

1:p—wvalue <0.01;1 : p— value < 0.05; * : S2DNets without TV loss

From Table 1 and Table 2, it can be seen that: MICO method effectively
removes bias fields with simple intensity distributions in the HCP dataset but
struggles with complex bias fields in the BrainWeb dataset. N4 method mitigates
bias field by maximizing high-frequency information, but neglects intensity fea-
ture, leading to intensity-shift results with lower PSNR and SSIM scores. The
Implicit network achieves lower CV values but suffers from over-correction. Yang
et al’s model improves brightness of MR image but fails to address bias field re-
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moval. RCGAN and IRNet both utilize unpaired clean data for supervision.
However, due to a lack of smoothness constraints, RCGAN distorts image de-
tails, while IRNet, although improving PSNR (0.4 higher in HCP) and SSIM
(0.008 higher in BrainWeb T2) fails to introduce the structural constraints of
corrected image and misidentifies the bias field as part of the image structure,
yielding sub-optimal results with higher CV values. These trends are further
confirmed in Fig

Table 3. Dice (%, mean/standard deviation) segmented by pre-trained 2D U-Net
model and software FSL with Wilcoxon-test between proposed and other top-4 methods
on HCP dataset.

Method Original MICO N4 IRNet S2DNets*  S2DNets
U-Net OM 63.71/13.24% 83.66/12.517 83.29/9.95% 82.82/14.25% 82.39/10.17* 84.16/10.31

WM 49.69/18.69% 83.87/15.90% 83.36/13.60% 79.66/21.14% 83.17/14.01* 85.03/13.36
GM 47.51/12.93% 69.06/21.15% 67.18/16.27% 69.60/22.52 * 65.14/15.38F 70.67/15.03
WM 63.81/16.22% 78.94/15.49* 74.80/13.65¢ 79.11/14.51 77.12/14.13* 79.11/11.58

1:p—wvalue <0.01;1 : p— value < 0.05; * : S2DNets without TV loss

FSL

v H 0.921 l>213 o7 VS 051 los a5 07
Yang et al. RCGAN IRNet S2DNets* S2DNets

Fig. 3. The performance of different methods. Yellow rectangle denotes remained bias
field or distorted structure.

In contrast, S2DNets effectively remove bias fields while preserving structural
details with high fidelity. The ablation study on lossty reveals that while CV
values increase slightly (no more than 0.011), PSNR improves significantly by
9.8%, 17.6% and 17.26% on HCP, Brainweb T1 and T2 datasets, respectively.
This highlights the effectiveness of global smoothness provided by lossry . Fi-
nally, the non-parametric Wilcoxon-test indicates significant differences between



S2DNets: MR Bias Field Correction 9

S2DNets and other methods, with most p—values smaller than predefined thresh-
old (0.01). We also evaluate our method on downstream segmentation tasks. We
applied a 2D U-Net model, which was pre-trained on clean MR images, and
a software FSL [29] for brain image segmentation on clinical dataset HCP by
Dice metric. As shown in Table 3, our method obtains the best segmentation
performance compared with other top-4 methods.

4 Conclusion

We introduce both structure and smoothness constraints into bias field correction
framework in a self-supervised learning scheme. The experiments executed on
both clinical and simulate dataset show that the proposed method achieves an
accurate bias field estimation for MR image recovery and has a wide potential
application in the future.
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