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Abstract. Extracting structured labels from radiology reports has been
employed to create vision models that detect several types of abnormal-
ities simultaneously. However, existing works focus mainly on the chest
region. Few works have investigated abdominal radiology reports due
to the more complex anatomy and a wider range of pathologies in the
abdomen. We propose LEAVS (Large language model Extractor for Ab-
dominal Vision Supervision). This labeler can annotate the certainty of
presence and the urgency of seven types of abnormalities for nine abdom-
inal organs on CT radiology reports. To ensure broad coverage, we chose
abnormalities that encompass most of the finding types from CT reports.
Our approach employs a specialized chain-of-thought prompting strat-
egy for a locally run LLM using sentence extraction and multiple-choice
questions in a tree-based decision system. We demonstrate that the LLM
can extract several abnormality types across abdominal organs with an
average F1 score of 0.89, significantly outperforming competing labelers
and humans. Additionally, we show that the extraction of urgency labels
achieves performance comparable to that of human annotations. Finally,
we demonstrate that the abnormality labels contain valuable information
for training a vision model that classifies several organs as normal or ab-
normal. We release our code and structured annotations for a publicly
available dataset containing over 1,000 CT volumes.

Keywords: Large language models · Abdominal CT · Medical reports
· Abnormality labels · Annotation · Classification

1 Introduction

Several works have extracted and shared structured labels from medical reports
to develop generalist vision models in radiology, with examples for chest X-
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rays [25] and chest CTs [5]. Labeling has traditionally been done by rule-based
algorithms [25,10,13,5,22] and supervised deep learning algorithms [19]. However,
recent works have employed large language models (LLMs) and shown their
superiority [3]. Work with LLMs on extracting labels from the long and diverse
CT reports has been limited to specific findings [6,23,24,27].

We propose a prompt system named LEAVS (LLM Extractor for Abdominal
Vision Supervision). It uses LLMs to extract comprehensive findings from ab-
dominal CT reports for several organs and represent them as structured labels, as
shown in Figure 1. The LEAVS prompt system is inspired by MAPLEZ (Medical
report Annotations with Privacy-preserving LLM using Expeditious Zero shot
answers) [3], but provides several innovations when adapting it to CT reports:

– sentence filtration, because we hypothesize that it will allow the LLM to
focus only on the parts of the long CT report that matter for its task;

– multiple-choice questions, so the LLM picks one type for each report finding;
– finding type definitions for abdominal CT, chosen to cover almost all findings

from reports while having enough types for separating distinct findings;
– urgency assessment, which might be important for filtering findings and as

additional information for supervision in vision models.

We demonstrate better scores than the average human for abnormality label-
ing and achieve the same level of scores for urgency labeling. We also employ
the structured labels to train a CT vision model and demonstrate preliminary
classification results, a potential step towards developing universal abnormality
detectors for abdominal CT scans. Our code and annotations for the AMOS-MM
dataset [12] can be found at https://github.com/rsummers11/LEAVS.

1.1 Related works

There have been few works that extract several abnormality types from ab-
dominal CT reports. Islam Tushar et al. [22] employed a rule-based algorithm
to extract labels of 5 different findings per organ for three organs in the chest
and abdomen and train a vision model with a private dataset. Lea Draelos et
al. [5] employ a similar approach with the SARLE (Sentence Analysis for Ra-
diology Label Extraction) labeler, which annotates 83 abnormalities across 52
body regions, mainly targeting chest CT scans. Both works employ rule-based
algorithms, which are less flexible than LLMs, as they require a new set of ex-
pertly crafted rules for every new abnormality or keyword they can identify. As
we show in our work, the SARLE labeler does not perform as well in the generic
task of extracting “any abnormality” presence in organs.

2 Methods

The proposed zero-shot prompt system is presented in Figure 2 and consists
of four stages: sentence filtration, finding type assessment, finding uncertainty
assessment, and urgency assessment. The first two stages are executed separately

https://github.com/rsummers11/LEAVS
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Fig. 1. We propose to employ LLMs to extract structured labels from CT reports to
train vision models. We present an example of an input and output of our method. The
report chosen for display is purposefully short. We include the pipeline we employed
to classify the presence of several types of findings in several abdominal organs.

for each organ, and the remaining two stages are executed for each finding type in
each organ. The nine organs we evaluate are presented in Figure 1. The prompt
system, however, allows for the easy integration of any organ or body region.

Sentence filtration occurs in two steps: the LLM first lists informative sen-
tences for each organ in a single answer and then reviews the remaining ones to
identify any additional relevant content. We then join the informative sentences
from both steps and provide only those in the subsequent prompt stages. For
the finding type assessment, the LLM is asked, in a multiple-choice question,
for the finding types mentioned in the report, as described in Table 1. A sen-
tence or organ may include multiple distinct findings. The LLM categorizes the
uncertainty of the identified findings among the choices shown in Figure 2. We
classify the urgency of present or possible findings according to the definitions
from Larson et al. [16], with an added level for non-actionable findings.

Sentences were added at the start of the prompt to ask the LLM to consider
all information. Chain-of-thought prompting (CoT) [14] was used except for the
first sentence filtration step. The LLM was instructed to interpret the medi-
cal meaning of each sentence before responding. For easier parsing, the model
summarized its CoT answer. Full prompts can be found in our code.

We evaluated the extracted labels when supervising a vision model. As shown
in Figure 1, we trained a model that utilizes a pre-trained CT embedder, UAE-
S [2], for feature extraction, and the segmentation outputs from TotalSegmenta-
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Fig. 2. Representation of all four steps of the LEAVS LLM processing. We show data
outputs for the report shown in Figure 1 for the diffuse finding in the liver.

Table 1. Definition of employed finding types. The definitions were considered mutu-
ally exclusive, and the multiple-choice question helped the LLM to enforce that.

Finding Type Description
Absent {organ} is not present
Device {organ} has support device
Postsurgical {organ} has postsurgical changes
Enlarged {organ} is enlarged
Atrophy {organ} has atrophied
Anatomy Uncommonly seen displacements, relative positionings, or shapes of the {organ}
Focal {organ} has a finding that can be measured from its borders
Diffuse {organ} has a finding without a well-defined border or shape for measurement

or that affects large regions
Quality Finding about the acquisition process for the {organ}
Adjacent An adjacent, extrinsic finding for the {organ}
Normal {organ} is normal

tor [11,26] to focus on the respective organ for each output. The only trainable
part of the model was the shallow classifier. The classifier had seven outputs,
one for each finding type among “Postsurgical”+“Absent”, “Quality”, “Anatomy”,
“Size”: “Enlargement”+“Atrophy”, “Device”, “Diffuse”, and “Focal”.

3 Results

We validated LEAVS on an anonymized private dataset of 15 reports from the
NIH Clinical Center, approved by the IRB (institutional review board). We
evaluated many LLMs, including the Llama 3 family [7], Llama3-OpenBioLLM-
70B [1], medllama3-v20 [18], QwQ-32B-Preview [21], Qwen2-72B-Instruct [28],
and Qwen2.5-72B-Instruct [20]. Our experiments employed the best validation
LLM in terms of F1-score for abnormality type labeling, Qwen2-72B-Instruct.

To test our labeler, we annotated 200 reports from the validation set of
AMOS-MM [12], a publicly available dataset of abdominal CT volumes and
reports with unspecified license. Humans annotated five finding types (“Qual-
ity”, “Postsurgical”+“Absent”, “Size”, “Diffuse”, and “Focal”) for nine abdominal
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Table 2. Scores of the proposed labeler (LEAVS), the MAPLEZ baseline [3], and hu-
mans. GBl: Gallbladder; RKid: Right Kidney; LKid: Left Kidney; LBow: Large Bowel;
PS: postsurgical; H: Human; H Avg: average over the five humans; N : number of
samples for score calculation (micro scores accumulate samples from non-micro rows,
and humans have a reduced N as each human labeled 100-150 reports and cases with
disagreement between other human labelers were excluded); N+: number of positive
samples; F1: F1 score; ns: P≥.05; ∗: P<.05;∗∗: P<.01; ∗∗∗: P<.001; LEAVSsubF1: F1
score for LEAVS in the evaluation subset of the respective human (used for P values
comparisons); Pre: Precision; Rec: Recall; Spe: Specificity; MCC: Matthews correlation
coefficient. We display 95% confidence intervals for some metrics between parentheses.

Organ Type Labeler N N+ F1 LEAVSsubF1 Pre Rec Spe MCC
Liver Diffuse LEAVS 200 31 .925(.844,.984) - .884 .970 .976 .912
Liver Focal LEAVS 200 91 .963(.931,.988) - .929 1.00 .936 .932
GBl Diffuse LEAVS 200 36 .817(.700,.907) - .903 .750 .982 .788
GBl Focal LEAVS 200 27 .732(.600,.835) - .588 .966 .896 .708
GBl PS LEAVS 200 11 .957(.824,1.00) - 1.00 .917 1.00 .955
Spleen Size LEAVS 200 21 .978(.919,1.00) - .957 1.00 .994 .975
RKid Focal LEAVS 200 62 .912(.850,.957) - .935 .889 .972 .874
LKid Focal LEAVS 200 57 .901(.835,.952) - .862 .948 .939 .863
LBow Focal LEAVS 200 38 .759(.640,.851) - .735 .794 .933 .702
LBow PS LEAVS 200 20 .977(.909,1.00) - 1.00 .955 1.00 .974
micro micro LEAVS 2000 394 .892(.869,.913) - .865 .921 .965 .865
micro micro MAPLEZ 2000 394 .827(.799,.851) ∗∗∗ .892(.869,.913) .726 .960 .911 .789
micro micro H1 1124 236 .871(.837,.902)∗∗ .923(.898,.946) .950 .805 .989 .845
micro micro H2 843 193 .935(.906,.960)ns .927(.899,.952) .973 .902 .992 .918
micro micro H3 476 125 .930(.893,.961)ns .940(.907,.968) .967 .898 .989 .908
micro micro H4 543 117 .869(.819,.911)∗∗ .935(.900,.964) .885 .855 .970 .835
micro micro H5 451 107 .868(.811,.913)ns .898(.850,.936) .918 .826 .977 .832
micro micro H Avg - - .894(.876,.911)∗∗ .924(.909,.938) .938 .856 .983 .867

organs. Five annotators (two board-certified radiologists, two senior radiology
residents, and one postdoctoral MD researcher) labeled 100 to 150 reports each,
depending on annotator availability, on an internally developed interface that
displayed one report at a time. In the interface, abnormality presence was se-
lected through checkboxes for each organ/finding type, and urgency was selected
from drop-down menus. Each report had three annotators. When evaluating
LEAVS, the ground truth was the majority vote from humans for binary labels
and the average of available human labels for urgency. We report results for
organs/abnormalities with more than 10 positive cases in the test set, which
removed some of the nine organs from our results. We calculated two-sided hy-
pothesis tests of the difference in scores against the proposed labeler (LEAVS)
and confidence intervals with 95% significance employing a paired bootstrap per-
mutation test with 2,000 samples. When evaluating humans, we only considered
cases when the two other humans who labeled that specific report agreed on the
presence to avoid biasing the scores. Urgency labels considered only the urgency
of the other two humans. When cases were filtered for human evaluation, we
compared against the LEAVS scores in the same subset for fair comparison. We
use micro-F1, except when aggregating over humans. For that case and other
metrics, we perform macro aggregation.
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Table 3. Evaluation of “any abnormality” (“Size”+“Focal”+“Diffuse”+“Postsurgical”+
“Absent”) presence labeling in each organ for proposed LEAVS labeler, MAPLEZ [3]
and SARLE [5] baseline, and the average of humans. Scores for the six organs with
N+>10 (liver, gallbladder, spleen, kidneys, pancreas, bowels) were aggregated using
micro scores. Refer to Table 2 for table symbols.

Labeler N N+ F1 LEAVSsubF1 Pre Rec Spe MCC
LEAVS 1200 381 .961(.946,.973) - .936 .987 .969 .942
MAPLEZ 1200 381 .938(.919,.954) ∗∗∗ .960(.946,.974) .889 .992 .942 .909
SARLE 1200 381 .705(.673,.734) ∗∗∗ .960(.946,.974) .570 .921 .678 .558
H Avg - - .961(.952,.969)∗∗ .976(.969,.983) .975 .948 .984 .938

Table 4. Ablation study for LEAVS and comparison to the employment of other LLMs.
“Finding type individually”: employing individual finding type assessment questions
for each finding type instead of multiple-choice questions; “Tree prompt (MAPLEZ)”:
employing the MAPLEZ prompt [3] for finding uncertainty assessment; “Fast sentence
filtration”: skipping the second step from sentence filtration; “RpH”: reports processed
per hour. All rows employed N=2000 and N+= 394. Refer to Table 2 for table symbols.

Labeler F1 RpH Labeler F1 RpH
LEAVS (Qwen 2 72B) .892(.868,.913) 3.49 Llama 3.3 70B .914(.893,.933)∗ 2.96
No CoT .879(.853,.902)ns 42.9 Qwen 2.5 72B .877(.850,.899)ns 2.80
Finding type individually .874(.849,.898)∗∗ 3.57
Tree prompt (MAPLEZ) .879(.853,.901)ns 3.73
Fast sentence filtration .893(.870,.915)ns 10.3
No sentence filtration .866(.841,.891)∗ 4.62

In Table 2, we evaluate the labeler. The MAPLEZ baseline employed the def-
initions of finding types from LEAVS. We provide Table 3 for evaluation against
the rule-based labeler SARLE, which has a different label set. For SARLE, we
considered only relevant finding types and included “Other” since it provided
higher scores. An ablation study is presented in Table 4. It also shows the
throughput of each method when using 2×A100 80 GB GPUs. We used the
vLLM library [15] for inference, reducing the required time by 90%.

We employ the Kendall Tau-b correlation coefficient to evaluate urgency
outputs in Table 5. Scores were calculated for the maximum urgency in each
organ. Similarly to the AUC metric, differences in calibration do not impact
these scores as long as the more urgent cases have a higher urgency than the less
urgent cases. To evaluate differences in calibration, we present Table 6.

We trained the classifier by randomly splitting the AMOS-MM training set,
which contained 1,287 reports and CT volumes, into training (80%) and valida-
tion (20%) sets, labeled by LEAVS. The final hyperparameters included a learn-
ing rate of 1e-3, a batch size of 512, the AdamW [17] optimizer, two sequential
ResNet layers [8] with a dropout rate of 0.9 between them as the shallow clas-
sifier, binary cross-entropy loss, and the concatenation of maximum, minimum,
and average pooling outputs. The model was validated every five epochs, and
we employed the model with the best average validation AUC. The testing on
the AMOS-MM validation set, labeled by the human labelers from reports, is
presented in Table 7. In addition to data bootstrap, we included the variation
of 5 random seeds in our statistics.



LEAVS: An LLM-based Labeler for Abdominal CT Supervision 7

Table 5. Scores for urgency outputs from LEAVS and humans employing the Kendall
Tau-b correlation coefficient (τb). For filtering results, instead of N+, we use N−Nmode,
where Nmode is the most common ground truth urgency. Refer to Table 2 for symbols.

Organ Labeler N N −Nmode τb LEAV Ssubτb
Liver LEAVS 102 52 .612(.502,.705) -
GBl LEAVS 50 37 .635(.471,.759) -
Kidneys LEAVS 84 43 .632(.489,.734) -
Bowels LEAVS 45 35 .460(.214,.654) -
Macro LEAVS - - .582(.503,.655) -
Macro H1 - - .606(.500,.696)ns .542(.409,.661)
Macro H2 - - .546(.446,.633)ns .507(.393,.607)
Macro H3 - - .717(.621,.791)∗ .556(.371,.682)
Macro H4 - - .581(.466,.674)ns .492(.313,.645)
Macro H5 - - .336(.208,.444)∗∗ .579(.444,.692)

- H Avg - - .556(.505,.599)ns .533(.453,.598)

Table 6. Prevalence of each urgency output. 0: normal/chronic/expected, 1: low ur-
gency, 2: medium urgency, 3: high urgency. Refer to Table 2 for table symbols.

Labeler %0 %1 %2 %3

LEAVS 4.6% 41.4% 38.4% 15.6%
H1 54.3% 20.8% 23.9% 1.0%
H2 65.1% 10.5% 24.1% 0.3%
H3 35.3% 36.3% 27.0% 1.4%
H4 36.2% 37.1% 22.6% 4.1%
H5 82.4% 8.2% 6.3% 3.1%

4 Discussion

LEAVS significantly surpasses the average human and beats two of the five
human labelers in Table 2. It tends to show higher recall than humans, missing
fewer mentions, but is less precise in applying medical definitions. The LLM
achieves higher F1 scores when compared to humans (column LEAVSsubF1)
because the subsets on which humans are being evaluated are easier as they
include only cases with agreement between the other two human labelers. LEAVS
surpasses the LLM baseline, MAPLEZ, increasing the F1 score by 0.065 points.

The MAPLEZ evaluation used the type definitions we derived for LEAVS,
which represent an additional contribution not reflected in the F1 score differ-
ence. Furthermore, LEAVS was validated in an anonymized private dataset, a
domain different from the test AMOS-MM dataset, showing the potential of
the prompt system to adapt to new domains. Matthews Correlation Coefficients
(MCC) were included to evaluate whether F1 scores were inflated by class im-
balance [4], but they did not reveal large gaps compared to the F1 scores.

Table 3 evaluates the labelers in an easier and less fine-grained task, as re-
flected in the higher scores. LEAVS significantly outperforms both baselines,
SARLE and MAPLEZ. The SARLE performance is probably low because it
does not account for all possible abnormalities with its rules and label set.

As shown in Table 4, sentence filtration and multiple-choice questions for
finding-type assessment significantly improved results, whereas using CoT and
multiple-choice questions for finding uncertainty assessment led to probable, but
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Table 7. Scores of the vision classifier trained to predict several types of abnormalities
for several abdominal organs. Refer to Table 2 for table symbols.

Organ Type N N+ AUC Organ Type N N+ AUC
Liver Diffuse 200 31 .755(.656,.840) Spleen Size 200 21 .927(.865,.968)
Liver Focal 200 91 .678(.602,.744) RKid Focal 200 62 .602(.522,.684)
GBl PS 200 11 .985(.953,1.00) LKid Focal 200 57 .508(.421,.591)
GBl Diffuse 200 36 .758(.656,.850) LBow PS 200 20 .689(.583,.786)
GBl Focal 200 27 .692(.576,.800) LBow Focal 200 38 .580(.473,.676)

Macro Macro - - .716(.690,.743)

not statistically significant, improvements. Sentence filtration probably allows
the model to focus on the important parts of the long reports: the average report
in the AMOS-MM training set has 16 sentences and 1,400 characters. Although
Llama 3.3 was not the best model in validation, it performed the best in the
larger testing set and is a potential improvement to consider. This difference
might be due to domain shifts between validation and test reports. This result
also shows that the method is adaptable to at least one other LLM family.

The inference time is one limitation of LEAVS since 3.49 reports per hour
can hinder use in large datasets or real-time applications. We prioritized labeling
quality for this specific work. Table 4 shows one way to speed it up: fast sentence
filtration. Speeding up inference with knowledge distillation [9] is a future effort.

The results from Table 5 show that the urgency labeling by the LEAVS
method has approximately the same quality as the labeling from the average
human labeler. However, human labelers vary greatly, with a Kendall Tau-b
ranging from .336 to .717. Table 6 shows a considerable variation in calibration
for humans, with the prevalence for the label “normal/chronic/expected” rang-
ing from 35.3% to 82.4%. LEAVS deviated from human urgency calibration,
labeling only 4.6% of cases as “normal” and assigning higher urgency levels more
frequently. This bias suggests the model adopts a more cautious approach.

Table 7 shows that the vision model can learn to identify most evaluated find-
ing types, with AUCs ranging from 0.508 to 0.985 and an average of 0.716. The
AUCs have potential for future improvement, but we were able to show that the
extracted information is learnable. Focal findings had the lowest scores, possibly
due to coarse pooling across entire organs or the reduced resolution of UAE-S
inputs (2× 2× 2 mm3) and outputs (4× 4× 4 mm3). The high performance for
postsurgical findings in the gallbladder is likely due to the absence of organ in
most of the postsurgical cases, resulting in embeddings full of zeros. Future work
will investigate classification improvements from learnable embedding networks
and pooling weights, as well as from training with new abdominal CT datasets
that include associated reports. We also plan to explore visual attribution meth-
ods to check if models can weakly learn to localize focal findings.

5 Conclusion

The zero-shot use of LLMs with the LEAVS prompt system can successfully label
abnormalities for several organs in abdominal CT reports, outperforming rule-
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and LLM-based alternatives. A supervised vision model learned some informa-
tion from the structured labels, showing potential for achieving general-purpose
abnormality classification in abdominal CT.
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