
Unsupervised Anomaly Detection on Preclinical
Liver H&E Whole Slide Images using Graph

based Feature Distillation

Lin Li1 ⋆, Lillie Shelton1, Thomas Forest2 ,Kyathanahalli Janardhan2, Tiffany
Jenkins2, Michael J Napolitano2, Roujia Wang2, David Leigh1, Tosha

Shah1,Grady Earl Carlson1, Rajath Soans1, Antong Chen1

1RaDS IT, Merck & Co., Inc., Rahway, NJ, USA
2NonClinical Drug Safety, Merck & Co., Inc., Rahway, NJ, USA

⋆ lin.li23@merck.com

Abstract. Toxicity assessment of candidate compounds is an essential
part of safety evaluation in the preclinical stage of drug development.
Traditionally, drug safety evaluations depend on manual histopatholog-
ical examinations of tissue sections from animal subjects, often leading
to significant effort in evaluating normal tissues. Moreover, the collection
of abnormality samples poses significant challenges due to the rarity and
diversity of various types of abnormalities. This makes it impractical to
develop a comprehensive training dataset that encompasses all potential
anomalies, particularly those that are underrepresented. Consequently,
traditional supervised learning methods may face difficulties, leading
to a growing interest in unsupervised approaches for anomaly detec-
tion. In this study, we present GraphTox, a multi-resolution graph-based
anomaly detector designed to assess hepatotoxicity in Rattus norvegicus
liver tissues. GraphTox is built upon a novel resolution-aware founda-
tion model pre-trained on 2.7 million liver tissue patches. Additionally,
GraphTox employs graph-based feature distillation on normal liver whole
slide images (WSIs) to identify hepatotoxicity. Our results demonstrate
that GraphTox achieves an 11.1% improvement in area under the receiver
operating characteristic curve (AUC) on an independent testing set com-
pared to the best-performing non-graph-based anomaly detection mod-
els, and an 8.1% improvement over a graph-based model derived from
a resolution-agnostic foundation model UNIv2. These findings highlight
that GraphTox effectively leverages the resolution-aware digital pathol-
ogy foundation model to capture multi-scale tissue characteristics within
the local tissue graphs, thereby enhancing anomaly detection across var-
ious scales1.

Keywords: Unsupervised · graph · foundation model · digital pathology
· anomaly detection · preclinical safety evaluation · drug development

1 Our code is available at https://linlilamb.github.io/GraphTox-project-page/
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1 Introduction

In drug development, the evaluation of histology slides from animal subjects,
such as Rattus norvegicus, is vital for safety assessments [1]. Analyzing these
histology slides is crucial for identifying potential adverse effects of new com-
pounds on biological tissues, ensuring that only safe and effective drugs advance
to clinical trials [1]. However, the manual analysis of histological slides is time-
consuming and prone to human error, which may prolong drug development
timelines and increase the risk of missing significant pathological changes [2].

To address this challenge, our study explores automated methodologies for
detecting tissue anomalies, thereby accelerating the drug development process.
In preclinical toxicity evaluation, gathering data on abnormal findings is com-
plex due to the inherent rarity and heterogeneity of these abnormalities. This
makes it impractical to create a comprehensive training dataset for all poten-
tial anomaly classes, particularly those that are underrepresented. Consequently,
traditional supervised learning methods may face difficulties, leading us to focus
on unsupervised methods for anomaly detection.

Unsupervised anomaly detection models aim to identify patterns and sig-
nals that diverge from the established distribution of normal samples [3]. Both
image reconstruction and feature distillation (FD) approaches have been inves-
tigated for anomaly detection in medical imaging applications [3]. Image recon-
struction approaches focus on identifying potential anomalies by examining the
discrepancies between reconstructed images and original images. For example,
s2-AnoGAN [14] leverages generative adversarial network (GAN) to learn how
to reconstruct normal images, subsequently flagging abnormal samples when re-
construction fails. In contrast, FD-based methods train a student encoder to gen-
erate embeddings that closely resemble those produced by a pre-trained teacher
encoder, using only normal samples [4, 5]. As a result, the student encoder may
find it difficult to replicate the teacher encoder’s output for abnormal samples,
which ultimately triggers alerts for potential anomalies. Furthermore, the recent
emergence of digital pathology (DP) foundation models shed lights for further
advanced FD-based anomaly detection in H&E whole slide images (WSIs) by
providing encoders pre-trained on diverse and large-scale datasets [6–8].

Given the gigapixel resolution of WSIs and their hierarchical organization at
various magnifications, e.g. 5× (2 µm/pixel), 10× (1 µm/pixel) and 20× (0.5
µm/pixel), it is necessary to generate smaller tissue patches (e.g., 256 × 256
pixels) at selected magnifications before inputting them into FD models. This
design narrows the focus of FD to extracting tissue information at specific mag-
nifications. However, histopathological anomalies can appear across various mag-
nifications, and pathologists often rely on the multi-resolution tissue morphology
to inform their decisions (Fig. 1 ). For instance, severe necrosis may be readily
observed at 5×, whereas vacuolation, the textural change with bubbles present,
requires higher magnification (e.g., 10×) for effective evaluation (Fig. 1). As cur-
rent DP foundation models are typically resolution-agnostic, which are trained
on tissue patches of a single magnification or mixed patches of varying magni-
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fications [6–8], their ability to capture resolution-specific tissue features may be
compromised.

To address these limitations, we propose GraphTox, a graph-based FD model
for unsupervised anomaly detection in liver WSIs. Our contributions include:

(1) GraphTox incorporates a resolution-aware DP foundation model pre-
trained on 2.7 million liver tissue patches across 5×, 10×, and 20× to provide
multi-scale tissue embeddings for graph-based FD.

(2) GraphTox creates multi-resolution tissue patch graphs to integrate tissue
information across various resolutions, rather than distilling tissue morphology
without considering resolution.

(3) We conduct experiments for GraphTox on hepatotoxicity, which is a lead-
ing cause of adverse drug reactions. Our results demonstrate that GraphTox ef-
fectively harnesses information across multiple resolutions in WSIs, enabling it
to capture anomalies at various scales.

Fig. 1. Anomaly examples. (a) Vacuolation: Textural change with bubbles, best ob-
served at 20×. (b) Hypertrophy: Size variation in hepatocytes, easier to detect at 10×.
(c) Cellular infiltrate: Inflammatory cells visible at 10×. (d) Adenoma: Expansile struc-
ture compressing surrounding tissue, observable at 5×. (e) Necrosis: Pinkish regions
infiltrated with inflammatory cells, detectable at 5×. (f) Cellular alteration: Smaller,
bluer hepatocytes, slightly expansile, challenging to observe by human eye.

2 Methods

Our proposed model, GraphTox, is developed based on two main components:
(1) a resolution-aware DP foundation model (Fig. 2 (a)-(b)) and (2) a graph
based FD for anomaly detection (Fig. 2(c)-(d)).
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Fig. 2. Overview of GraphTox: (a) A resolution-aware digital pathology foundation
model; (b) A resolution-aware vision transformer; (c) GraphTox training, where the
teacher model is a pre-trained resolution-aware DP foundation model and the student
model, sharing the same architecture, is trained exclusively on normal tissue samples.
GraphTox inputs are local multi-resolution tissue graphs. (d) GraphTox inference en-
ables anomaly detection across multiple resolutions at the same location. For example,
tissue morphology observed at 5× may not indicate significant abnormalities, while
10× and 20× can reveal potential anomalies like hypertrophy and vacuolation.

2.1 Resolution-aware Foundation model

DP foundation models have been trained on millions of small local tissue regions,
or called patches, at selected magnifications, e.g. 20×, using self-supervised learn-
ing [6–8]. However, tissue morphology varies at different resolutions and con-
tributes differently to the decisions made by the pathologists (Fig.1) . Therefore,
instead of treating the patches independently of their resolution, we developed a
resolution-aware foundation model (FRA) to extract tissue features conditioned
on the resolution of the patches. As most recent DP foundation models [6–8]
are built on DINOv2 [12], a vision transformer (ViT) based knowledge distilla-
tion architecture, we replace the traditional ViT with a resolution-aware ViT by
adding a learnable resolution embedding to condition the feature learning with
resolution information (Fig.2).

Specifically, each input 2D tissue patch x ∈ RH×W×C is reshaped into a
sequence of flattened 2D patches tp ∈ Rn×(P 2C), where H,W refers to the height
and width of the image, C is the number of channels, P is the ViT patch size,
and n = HW/P 2 referring to the number of ViT patches. Then, tp are mapped
to a embedding space with dimensions as D using a trainable linear projection,
producing patch embeddings xp ∈ Rn×D. The resolution embedding xr ∈ RD

is determined by a learnable dictionary r = [x0, x1, ..., xm], r ∈ Rm×D, where m
is the number of resolutions. In addition, we include a learnable embedding as
a class token xclass ∈ RD. Position embeddings Epos ∈ R(n+2)×D are added to
inform the positional information in the transformer encoder (Eq. 1). z0 denotes
the first layer in the transformer encoder which is followed up with alternating
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layers of multiheaded self-attention, layernorm, and multi-layer perceptron as
described in ViT [17].

z0 = [xclass, xr, x
1
p, x

2
p, ..., x

n
p ] + Epos (1)

Similar to DINOv2 [12] , FRA is trained with a discriminative self-supervised
method using loss function shown in Eq.2. The pt and ps refer to the teacher
and student class token respectively, pti and psi are the teacher and student
patch tokens and i are patch indices for masked tokens. The dn,i is a distance
measure to evaluate the embedding distance between nth and ith sample in a
batch, where n ̸= i.

L = −(
∑

pt log(ps) +
∑
i

pti log(psi) +
1

N

n∑
i=1

log(dn,i)) (2)

2.2 Multi-resolution Graph-based Feature Distillation

After pre-training FRA, we further develop GraphTox using FD. FD-based anomaly
detection models train a student encoder to learn to mimic teacher encoder em-
beddings solely from normal samples. Consequently, the student encoder may
struggle to match the teacher’s outputs when faced with abnormal samples. Since
anomalies in WSIs often span multiple scales, it is crucial to train the FD-based
anomaly detection model with patches from various resolutions. Additionally,
while tissue morphology varies by resolution, features in patches at the same
spatial locations are interrelated rather than independent. Therefore, during the
FD process, it is vital to integrate information across all resolutions at the same
spatial locations in a learnable manner. To achieve this, we first construct multi-
resolution tissue graphs locally and then optimize the FD by minimizing the
difference between the two multi-resolution graphs at the same location, using
student and teacher embeddings as the node features respectively. To create the
local multi-resolution tissue graph, we generated non-overlapping tissue patches
at 5×. For each 5× patch, we identify four (2-by-2) nearest-neighbor patches at
10× and sixteen (4-by-4) nearest-neighbor patches at 20×. All the patches are
connected to its corresponding lower resolution node as illustrated in Fig.2 (c).
Consequently, the loss function of the GraphTox can be illustrated as Eq. 3.

LFD =

n∑
i

S(Gxi
s
, Gxi

t
). (3)

The Gxi
s

denotes the ith node’s student embedding and Gxi
t

is the ith node’s
teacher embedding. S denotes the distance measurement and we use Huber loss
[13] as S in this study. LFD denotes the loss function to be minimized during
training. Only ViT patch embeddings are used as the teacher and student em-
bedding during optimization. In addition, LFD will be used as an anomaly score
during inference in the testing set. The larger the anomaly score of a patch, the
higher the likelihood that it contains abnormal signals.
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3 Experiments and Results

Our DP foundation model FRA was trained on 2,701,608 patches sampled from
819 Rattus norvegicus subjects. These patches were equally distributed across
5×, 10× and 20×. The backbone of FRA is ViT-L/16 with an additional reso-
lution token. The pre-trained FRA is used as the teacher encoder in GraphTox,
where the architecture of the student encoder is the same as the teacher encoder,
a resolution-aware ViT-L/16. The anomaly detection training dataset contains
566,784 tissue patches sampled from 40 normal liver WSIs across 5×, 10× and
20×. In addition, 28,738 local multi-resolution graphs were created in the train-
ing set to establish graph-based FD model development (Fig. 2 (c)). We also
collect 158 liver WSIs as an independent testing set with 74 WSIs marked as
anomaly and 84 WSIs without remarkable anomaly findings. The tissue patches
with size 256×256 pixels will be resized to 224 × 224 as needed for DP foundation
model feature extraction.

Table 1. Mean AUC and 95% confidence interval of anomaly detection models on
independent testing set. The ’combined’ results use max pooling to select the highest
anomaly score across three single-resolution FD models, meaning different resolutions
may be chosen per WSI.

Types Models 5× 10× 20× Combine

FD

UNIressingle
0.64 (0.60 - 0.69) 0.71 (0.67 - 0.75) 0.55 (0.50 - 0.60) 0.55 (0.50 - 0.6)

UNIresmix
0.71 (0.66 - 0.75) 0.69 (0.64 - 0.73) 0.65 (0.61 - 0.69) 0.70 (0.66 - 0.74)

UNIv2resmix
0.73 (0.69 - 0.77) 0.73 (0.69 - 0.78) 0.70 (0.66 - 0.74) 0.72 (0.68 - 0.77)

RAresmix
0.73 (0.69 - 0.77) 0.67 (0.63 - 0.72) 0.69 (0.65 - 0.74) 0.71 (0.67 - 0.76)

GAN s2-AnoGAN - - - 0.61 (0.56-0.65)

Graph-FD
UNIv2graph - - - 0.74 (0.70 - 0.78)
RAtransformer - - - 0.74 (0.70 - 0.78)
GraphTox - - - 0.80(0.76 - 0.84)

3.1 FD and GAN based anomaly detection models

To evaluate the contribution of the multi-scale tissue information for anomaly
detection, we implemented UNI [6], UNIv2 [6] and our DP foundation model
FRA as teacher encoders, training student encoders using the same data without
constructing local multi-resolution tissue graphs. The UNI model utilizes ViT-
L/16 architecture, while UNIv2 employs ViT-H/14-reg8. For both UNI-based
models, the student encoders are of ViT-L/16 and ViT-L/14, respectively.

First, we trained the anomaly detection model (UNIressingle
) using UNI

as the teacher encoder with tissue patches solely at 10×. We then validated
UNIressingle

on an independent testing set using tissue patches at 5×, 10×, and
20×, combining anomaly scores from all resolutions through max pooling. Next,
we trained the anomaly detection model (UNIresmix

) with UNI as the teacher
encoder on all tissue patches from 5×, 10×, and 20× in the training set, follow-
ing the same validation strategy. Additionally, with the recent release of UNIv2,
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we applied the same training approach to develop UNIv2resmix
. Finally, we em-

ployed pre-trained FRA as the teacher encoder to create the anomaly detection
model (RAresmix), assessing whether resolution-conditioned tissue characteris-
tics enhance anomaly detection across different resolutions.

As shown in Table 1, all anomaly detection models trained with mix reso-
lution tissue patches led to a larger WSI-level area under the receiver operat-
ing characteristic curve (AUC) than UNIressingle

when combining all prediction
results at all resolutions. This result suggests that anomaly detection on WSIs
requires multi-scale tissue information. Since UNIressingle

was trained on the tis-
sue patches at 10×, it performed best on 10× compared to the prediction results
at 5× and 20×. In addition, UNIv2resmix demonstrated better results in tissue
patches in all resolutions compared to UNIresmix

, indicating that UNIv2 has
better capacity to capture multi-scale tissue information than UNI. Addition-
ally, UNIv2resmix

outperformed UNIresmix
across all resolutions, highlighting

UNIv2’s superior ability to capture multi-scale tissue information. Meanwhile,
RAresmix showed comparable results to UNIv2resmix across all resolutions but
had a lower AUC at 10×. Despite leveraging multi-scale tissue information by
mixing patches during training and selecting the highest anomaly score across
resolutions, the ability to fully utilize multi-scale tissue information remains lim-
ited. Therefore, the next section will discuss our efforts in enhancing multi-scale
tissue information usage through graph-based FD.

In addition to FD-based methods, we evaluated s2-AnoGAN [14] using the
same training and testing sets. It has been shown that s2-AnoGAN exhibits su-
perior performance in detecting DP anomalies compared to f-AnoGAN [9] and
pg-AnoGAN [15]. Additionally, our previous study [16] suggests that using the
structural similarity index measure (SSIM) to quantify reconstruction quality
enhances DP anomaly detection. Therefore, we used SSIM as the anomaly score
for performance evaluation on the testing set. As shown in Table 1, FD-based
methods outperformed GAN-based method, indicating the significant contribu-
tion of the DP foundation models.

3.2 Graph-FD-based anomaly detection models

Instead of treating tissue patches at various resolutions as independent entities,
we proposed the creation of local multi-resolution graphs and distilling the fea-
tures of the teacher encoder to the student encoder at the graph level. GraphTox
utilizes FRA as the teacher encoder and trains the student encoder on the lo-
cal multi-resolution graphs. Our results demonstrate that GraphTox enhances
anomaly detection performance compared to RAresmix with 12.7% increase in
AUC on testing set (Table 1), highlighting the effectiveness of the graph-based
FD. Moreover, GraphTox has the capability to identify the anomaly with re-
flecting the corresponding resolutions (Fig. 2 (d)). Additionally, we investigated
the use of UNIv2 as the teacher encoder for the graph-based FD (UNIv2graph).
The results indicate that GraphTox outperforms UNIv2graph on the testing set,
suggesting that FRA enables the student encoder to capture resolution-specific
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features, thus enhancing its ability to detect multi-scale anomalies. Both Graph-
Tox and UNIv2graph demonstrate improved WSI-level anomaly detection com-
pare to the RAresmix and UNIv2resmix , which are trained purely with mixed
resolution tissue patches without using a graph model (Table 1). Fig. 3 illus-
trates an WSI containing multiple anomaly regions. GraphTox and UNIv2graph
show superior localization of anomalies compared to the mixed-resolution models
(Fig. 3 (b)-(e)). Notably, GraphTox detects a greater number of anomalies than
UNIv2graph, e.g. vacuolation (Fig. 3 (f) orange box). Furthermore, we explored
the inclusion of a graph transformer in the student model ( RAtransformer ) to fa-
cilitate message passing across nodes of local tissue graphs during training. This
approach improved the anomaly detection performance on the testing set com-
pared to RAresmix

. However, GraphTox demonstrated a significant improvement
over RAtransformer by removing the graph transformer in the student model.
This finding suggests that the graph transformer may inadvertently dilute the
anomaly signal flagged at individual patches by learning to mimic the teacher’s
output for the current node based on information from surrounding nodes.

Fig. 3. Anomaly Detection on a whole slide image. (a) A liver whole slide image of a
Rattus norvegicus study. (b) Anomaly detection heatmap of GraphTox; (c) Heatmap of
UNIv2graph. (d) Heatmap of RAresmix . (e) Heatmap of UNIv2resmix . (f) The zoomed
in visualizations of the anomaly regions. Red: dried-out artifact; Black: dilatation;
Blue: vacuolation; Orange: vacuolation. Both UNIv2graph and UNIv2resmix missed
the vaculation at the region highlighted in orange box.

4 Conclusion

In summary, this paper proposes an innovative approach for unsupervised anomaly
detection on preclinical liver WSIs. Our model, GraphTox, achieving a novel
resolution-aware digital pathology foundation model and graph-based feature
distillation, illustrating state-of-the-art performance on hepatotoxicity detection.
GraphTox achieves an 11.1 % improvement in AUC on an independent testing set
compared to the best-performing non-graph models , and an 8.1% improvement
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over the UNI v2 graph-based anomaly detection model. These results demon-
strate that our resolution-aware digital pathology foundation model effectively
utilizes the multi-scale tissue characteristics present in the local multi-resolution
tissue graph, thereby enhancing anomaly detection across various scales. Our
method has only been experimented to a single organ type. Future work will
aim to extend anomaly detection capabilities to multiple organ types.

Disclosure of Interests. The authors have no competing interests to declare
that are relevant to the content of this article.
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