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Abstract. Tau pathology is a hallmark of Alzheimer’s disease (AD),
and longitudinal tau positron emission tomography (PET) provides valu-
able insights into disease progression. However, the integration of tau
PET data into computational models remains limited by challenges in en-
coding topographical information and ensuring longitudinal consistency.
Existing biomarker-based representations often lack spatial flexibility
and fail to account for covariance between brain regions. Additionally,
traditional approaches often treat longitudinal scans as independent ob-
servations, neglecting temporal coherence. To address these limitations,
we propose a novel Multiresolutional Reeb Graph representation that
encodes the spatiotemporal propagation of tau topographical informa-
tion. Our method constructs Reeb graphs to capture tau topography at
a static time point and extends them into a multiresolutional framework
to model disease evolution. We introduce a topology-based measurement
for quantifying pathology spatial distribution similarity, and a severity
interleaving distance for robust longitudinal staging. The efficiency of
the proposed representation is validated in two downstream tasks: an in-
tegrated subtyping and staging system, and the longitudinal pathology
prediction. The promising results compared with the current methods
demonstrate the great potential of the proposed representation to en-
hancing the application of longitudinal tau PET data, and offering a
reliable approach for studying AD progression.
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1 Introduction

Tau is a hallmark pathology of Alzheimer’s disease (AD)[8], and its accumula-
tion has strong correlation with AD symptoms. It can be quantified spatially
in the brain using positron emission tomography (PET), enabling the study of
disease progression in-vivo and even pre-symptomatically [18|. Previous research
has demonstrated that the topographical information of tau PET is effective in
staging AD [4][9] and predicting future neurodegeneration [14]. The emerging
of large-scale longitudinal tau PET data provides even greater opportunities for
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the development and validation of predictive models. However, integrating longi-
tudinal tau PET data into existing computational methods remains challenging
due to the lack of valid representations, which further compromises the robust-
ness of longitudinal analyses. Therefore, establishing a reliable topographical
representation is crucial for effectively incorporating tau PET data into current
learning-based frameworks.

The application of longitudinal tau PET data currently faces two major
challenges. Firstly, the topographic information is not effectively encoded in
biomarkers derived from tau PET imaging. In most studies, tau PET data is
only used as a scalar biomarker for disease staging [10][8]. While some advanced
analyses [20][9] incorporated the spatial distributions of tau accumulation, they
remain constrained by the limited biomarkers and rigid region-of-interest (ROT)
definitions based on the established atlases. These biomarker-based representa-
tions lack topographical flexibility, that ignoring the inter-regional covariance
and longitudinal coherence in tau progression. The second challenge is the accu-
rate longitudinal measurements of accumulation [3]. Measurement uncertainty,
biological variability, and other confounding factors complicate the assessment
of true variation in protein accumulation. Moreover, most longitudinal tau PET
scans are analyzed as independent static observations, while the intrinsic tem-
poral coherency is ignored or underestimated as a simple linear process [19], lim-
iting the ability to capture complex disease dynamics. Therefore, a topography-
specific representation that enables a spatiotemporal characterization of longi-
tudinal tau pathology propagation is essential for improving the analysis and
interpretation of longitudinal tau PET data.

To overcome these limitations, we propose a topographical representation
to effectively handle the longitudinal tau PET data. Firstly, we adopt a topo-
graphical representation based on Reeb graph analysis [22], which was originally
proposed for characterizing the spatial distribution of tau pathology in cross-
sectional data and identifying its subtypes. This topographical representation
is then extended into a Multiresolutional Reeb Graphs (MRGs) framework for
encoding the temporal propagation. The MRGs representation is adaptive to the
focal distributions of tau accumulations, and the transitions across resolutions
robustly characterize the dynamic pathology progression. Secondly, based on the
topology and properties of MRGs, a topology similarity is proposed for quantify
the spatial similarity of tau accumulations, and a temporal severity measurement
is proposed for robust staging.

We apply the proposed MRGs representation to longitudinal tau PET imag-
ing data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) [11]. Two
downstream tasks are conducted for validating the efficiency of the representa-
tion. In the first experiment, we modified the community detection algorithm
originally used for the cross-sectional clustering problem [22] into a multi-stage
framework for integrating subtyping and staging within a unified approach. We
compare our results with the state-of-the-art spatiotemporal SuStaln method
[21] by accessing the longitudinal stability and clinical correlations. The findings
demonstrate our representation effectively captures robust pathology progression
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patterns in longitudinal tau PET data. In the second experiment, we compare the
longitudinal prediction accuracy with both statistic methods and an advanced
deep learning method, where our method yields more accurate and interpretable
results. The promising results demonstrate the great potential of using our topo-
graphical representation in enhancing longitudinal tau PET analysis for precise
disease modeling and progression tracking.

2 Method

In this section, we firstly introduce the construction of topographical representa-
tion from Multiresolutional Reeb Graphs (MRGs). A topological similarity and
a severity interleaving distance is then proposed for measuring the spatiotempo-
ral pattern similarity and variations. A population-level graphical distribution
is constructed according to the spatiotemporal relations, and a subtyping and
staging integration system is proposed based on the connectivity of this distri-
bution. Additional, a longitudinal prediction strategy is provided based on the
population distributions.

2.1 Topographical Representation from Reeb Graph Analysis

The Reeb graph [13] is a topographic signature of real-valued functions and is
widely used in geometric shape analysis [17][7], and hence is a natural choice for
encoding the topographical information of cortical tau PET signals. We directly
employed the method proposed for cortical surface structures [15][22] for the
numerical calculation of Reeb graph of SUVR function f on surface M. In
essence, the Reeb graph describes the connected components of the level sets of
a function. Because the topology only change at the critical points (minimum,
saddle and maximum points), we firstly obtained all the critical points C, and
their level contours. The connections between these critical points in the Reeb
graph are obtained by applying region growing [15] on the mesh M and serve as
the edges. The generated Reeb graph is represented as R(f) = (C, E), where C
is the nodes of the graph, corresponding to the critical points, and E is the set
of edges, which are the partitions enclosed by two neighboring level contours.
The longitudinal topographical changes of tau pathology on cortical surface
can be captured by the topology variations in the Reeb graphs. The emergence
of the pathology corresponds to the appearance of salient components that grad-
ual isolate from the background in Reeb graph (Fig. 1(b)), while its propagation
can be represented by the expansion and further merging between connected
components (Fig. 1(a)). Therefore, to seamless intergrate the static Reeb graph
observation and the temporal progression of tau pathology, we extend the to-
pographical representation into a Multiresolutional Reeb Graph (MRG) repre-
sentation [7]. The basic idea of the MRG is to develop a series of Reeb graphs
at multiple levels of detail, embedding temporal dynamics within spatial pat-
tern characterization. A persistence-based simplification method [16] is taken
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Fig. 1. Visualization of Multiresolutional Reeb Graphs (MRGs). (a) Pathology prop-
agation is represented by edge expansion and fusion during graph simplification. (b)
Pathology emergence is represented by edge formation across longitudinal scans, where
red edges initially connected to the background become isolated as salient components.
(c¢) Examples of MRGs for longitudinal scans of a same subject.

for producing the MRG. For an edge E} = (C',C})(f(C]') < f(C})) in the
Reeb Graph R™(f) = (C, E™) at resolution n, its persistence is defined as:

p(Ey) = A(ER) x f(CF) (1)

where A(E}) is the length of the edge E}!, usually calculated as the number
of vertices included in this edge, and f(C7') is the peak SUVR value of this edge.
To derive the Reeb graph at resolution n 4+ 1, we process nodes in decreasing
order of peak SUVR based on the persistence threshold . We collapse edges
E} with p(E}) < 0, merge the node C* (with a lower SUVR) into the node
cy (with a higher SUVR), and update the persistence for the new edge accord-
ing to Equation 1. This simplification process continues until the threshold is
reached, yielding a series of Reeb graphs at progressively coarser resolutions:
{R' = (C',E"),R? = (C?,E?),...,RN = (CN,EM)} (CN cCcN-L c...Ch).
The MRG representation maintams topologlcal consistency [7], such that (1) the
parent-child relationships between nodes are consistent across levels; (2) itera-
tive simplifications converge to the coarsest Reeb graph; (3) a Reeb graph of
a certain level implicitly contains all the information of the coarser levels. The
example of MRGs from a longitudinal subject is shown in Fig.1(c).

2.2 Spatiotemporal Similarity of Multiresolutional Reeb Graphs

We firstly develop a similarity metric for evaluating the tau pathology distri-
bution similarity between static observations based on topology attributes of
Reeb graph. Given the Reeb graph R = (C*, E7") of a scan z at resolution m,

min(S zm),max (S zm
the SUVR range of the edge £} is defined rym = min U‘Zé(;UVRi)UVR il

(rzm C [0,1]). By integrating the spatial information of edges on the mesh M
and their attributes of SUVR ranges, we could defined the local topological sim-
ilarity T'Szm yn between two edges from two scans at individual resolutions as:
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in which,A denotes the length of the edge. rgm and ryr are the SUVR
ranges of the edges, and the operations between two SUVR ranges are defined as

rap (Yryr = [max(mf(rxlm), inf(ry»)), min(sup(rem ), sup(ryjn))] and ryp (Jryp =

TSI’" ’y; =

(2)

[min(inf (rzp), inf(ryn)), max(sup(rem ), sup(ry;))] . This similarity measurement
satisfies 0 < T'Sym, yr < TSym am = 1.

To systematlcally characterlze the global similarity between two Reeb graphs
that integrating all edges, we propose a max-chain similarity that captures
both the spatial distribution of pathology and the temporal progression coher-
ence. This metric is inspired by the universal edit-distance of Reeb graph [1].
Given the edges of two scans at resolution m and n: {Eym, Eyp, ..., Eym} and
{Eyn,Eyp, ..., Ezn }, where both sequences are sorted in decreasing orders of
peak SUVR, the global max-chain similarity 7'Sym ,»is defined as :

TSym yn = ma TS ym yn 3

T s Sl Z T ®)
(i) es

Here S is the non-crossing subset of the index pairs {(¢,7)}, such that for

any edge combinations (i,5) and (p, q), if we have i < p, we always have j < q.

To reduce the influence of Reeb graph complexity on similarity scaling, we

. o - TS,
normalize the similarity as T'Sym yn = L .
/T Sam gm/TSyn yn

ensures the similarity metric scale-invariant, enabling fair comparisons across
graphs with different complexities.

This normalization

Moreover, inspired by the interleaving distance of Reeb graphs [5], we define
a severity interleaving distance between Reeb graph to measure the severity
differences and temporal ordering between tau PET data as:

Loy= Y_ [(m)—mi)+al) —1,)] x A(Eym) (4)

(i,j) €S

in which S is the max-chain non-crossing index pairs from Equation 3. m},
and mg are the midpoints of the SUVR distributions of the edges, and I, and li
are the length of the SUVR ranges of the edges. The weight a = 0.5 is taken in
our experiments. This metric capture the global severity difference between two
edges by quantifying the transformation cost between SUVR distributions.

To model the population distribution of tau PET data by integrating the spa-
tiotemporal similarity of MRGs, we construct a directed graph, in which each
scan is represented as a node and organized into layers corresponding to dif-
ferent disease stages. Within a stage, the edges connects the scans with similar
spatial patterns and contains the edge attribute of the maximum topology sim-
ilarity across resolutions. Across stages, edges link each scan to its longitudinal
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follow-up or a cross-subject scan with high topological similarity and signifi-
cant severity differences. This graph structure effectively captures both spatial
pathology distribution and temporal progression within a unified framework.

2.3 Validation of Topographical Representation

We validate the topographical representation through a unified subtyping and
staging task, evaluating whether the directed graph effectively captures spa-
tiotemporal relationships in population. Additional, we perform longitudinal
prediction on new data to further assess the efficacy of the spatiotemporal dis-
tributions.

Subtyping and Staging To achieve subtyping and staging while leveraging
the structure of directed graph, we develop a multi-stage community detection
algorithm based on the efficient Louvain method [2]. All the training data is
initialized into multiple stages based on longitudinal time points. The community
detection is applied within each stage by achieving:

max(Q + 0 | R(z,y)(cs, ¢y)) (5)
Ty
where @) is the modularity of the graph. 6 is the regularization weight, and
R(z,y) = 1 when z and y are from the same subject, otherwise 0. ¢, is the
community assignment of vertex x, the d-function §(u,v) is 1 when v = v,
otherwise 0.
The stage membership is further adjusted within each subtype according to:

min() " inf x[g. — q,) T (2, y) + [gx — q] " Lay) (6)

where ¢, is the stage of scan z, T'(z,y) = 1 if y is the longitudinal follow-up
of , L, , is the severity interleaving distance between two scans, and [t|T =1
if ¢ > 0, otherwise 0.

The community detection and stage adjustment process is repeated until
convergence or reaching the maximum iterations. This approach enables the si-
multaneous identification of subtypes and stages, ensuring both spatial coherence
and longitudinal consistency in disease progression modeling.

Longitudinal Prediction Given the population-level distribution, we could
predict the follow-up for a scan via group-wise spatiotemporal similarity and the
temporal connections in the directed graph. For a scan z?, we first identify the
K most similar same-stage scans from the training data as y},y5, ..., y%. Their
weights wq, ws, ..., wi are determined by normalizing topological similarities,
ensuring » , (wy) = 1. Next, using the longitudinal relationships in the directed
graph, we obtain their corresponding follow-up scans: yiﬂ, yé“, . ,y?l. As a
result, the estimation of Zi+! = ) wiyfﬂ. This approach ensures the prediction
preserves both spatial patterns and temporal progression. The illustration of the
process is shown in Fig.2(a).
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Fig. 2. Longitudinal prediction process and results.
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Fig. 3. (a) Average patterns in subtypes and stages. (b) Different subtypes exhibit dif-
ferent diagnostics distributions. (c¢) Different subtypes exhibit significant different(p <
0.05) age distributions. (d) Different subtypes exhibit different cognitive decreasing
rate across stages.

3 Experiments and Results

Totally 368 subjects with longitudinal tau PET scans from Alzheimer’s Dis-
ease Neuroimaging Initiative (ADNI) dataset [11] are used in the experiments,
including 285 subjects with 729 longitudinal scans for training and 83 subjects
with 207 longitudinal scans for testing. All imaging data were preprocessed using
the standard PETSurfer pipeline [6] for partial volume correction and intensity-
normalization. The inferior cerebellar gray matter was used as the reference
region to generate tau SUVR maps on cortical surfaces. In the current exper-
iments, we use 6-level multi-resolution Reeb graph for all data as this level of
complexity could sufficiently capture the majority of spatiotemporal features.

3.1 Longitudinal Subtyping and Staging

The subtypes and stages are derived from the connections among training data
using the multi-stage community detection algorithm, which is elucidated in
Section 2.3. To evaluate longitudinal stability, we compare our method with the
popular spatiotemporal SuStaln method [21]. The longitudinal stability is de-
fined as the proportion of subjects classified into the same subtype across all
time points. Directly using the mean SUVR within five ROIs (temporal, frontal,
parietal, occipital, and medial temporal lobes) as biomarkers, the longitudinal
stability of the SuStaln method for defining three subtypes is only 68.07%. This
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Method|Interpolation|Extrapolation|D-Interpolation|D-Extrapolation| Ours
MSE 0.0861 1.9585 0.3850 0.5412 0.0529
Table 1. Longitudinal prediction error.

instability is primarily due to the limited number of biomarkers and large sam-
ples of early-stage scans. While with a regularization weight of # > 1073, the
longitudinal constrains in our method could ensure 100% longitudinal stability,
demonstrating our approach effectively incorporates longitudinal data. This lon-
gitudinal constrains allow later scans with salient patterns to inform earlier scan
memberships, which used to be challenging in subtyping. The superior longitudi-
nal stability of our method indicates the proposed representation could success-
fully encode the spatiotemporal patterns, and the ability of modified community
detection algorithm to leverage this dynamic representation structure.

The discovered pathology patterns are distinguished across subtypes, while
keep a consistent phenotype within each subtype across stages (Fig.3(a)). We
also perform a series of statistical analysis on biological and clinical measure-
ments, with the results presented in Fig.3(b)(c)(d). The observed differences in
diagnostic distribution, age distribution, and MMSE scores reveal the systematic
difference across subtypes, and the different propagation speeds across stages. In
Fig. 3(b), each subtype includes subjects across all diagnosis groups, indicating
that the observed differences are not due to data imbalance.

3.2 Validation on Longitudinal Prediction

Using the longitudinal prediction approach as introduced in Section 2.3, we es-
timate the follow-up SUVR from one previous tau PET data as illustrated in
Fig.2(a).

A learning-based disentanglement network [12] is used for comparison, which
models the progression speeds in both normal aging and disease directions in the
latent space z for a given pair of longitudinal scans. This enable two prediction
strategies at time ¢: (1) D-Interpolation: estimate the speed with the given pairs
at time t — 1 and ¢+ 1, and reconstruct the scan at time ¢; (2) D-Extrapolation:
estimate speed with the given pairs at time t — 2 and ¢t — 1, and predict the
scan at time ¢. Additionally, direct interpolation and extrapolation from SUVR
maps are used as the baselines. Prediction error is measured by mean-square-
error (MSE) as reported in Table. 1 and Fig.2(b). The deep learning based
method and the direct extrapolation fail to estimate the vertex-wise individual
progression rates due to the complexity caused by disease dynamics, resulting in
suboptimal predictions. In contrast, our topographical representation effectively
encodes the individual variability and the spatiotemporal progression of pathol-
ogy, and graphical connections capture the group-wise similarity, our proposed
longitudinal prediction approach reach the promising accuracy, outperforming
than other methods.
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4 Conclusion

In this paper, we propose a multiresolutional topographical representation for
longitudinal tau PET data that integrating the spatial distribution and temporal
propagation within a unified framework. A topology similarity and severity inter-
leaving distance are then proposed based on the properties and structures of the
representation for measuring the spatiotemporal similarity between scans. We
validate and evaluate our approach on longitudinal ADNI data, demonstrating
its effectiveness in subtyping, staging, and forecasting future tau accumulation.
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