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Abstract. We propose a novel approach that adapts hierarchical vision
foundation models for real-time ultrasound image segmentation. Exist-
ing ultrasound segmentation methods often struggle with adaptability
to new tasks, relying on costly manual annotations, while real-time ap-
proaches generally fail to match state-of-the-art performance. To over-
come these limitations, we introduce an adaptive framework that lever-
ages the vision foundation model Hiera to extract multi-scale features,
interleaved with DINOv2 representations to enhance visual expressive-
ness. These enriched features are then decoded to produce precise and
robust segmentation. We conduct extensive evaluations on six public
datasets and one in-house dataset, covering both cardiac and thyroid
ultrasound segmentation. Experiments show that our approach outper-
forms state-of-the-art methods across multiple datasets and excels with
limited supervision, surpassing nnUNet by over 20% on average in the 1%
and 10% data settings. Our method achieves ∼77 FPS inference speed
with TensorRT on a single GPU, enabling real-time clinical applications.

Keywords: Ultrasound image segmentation · Vision foundation model
· Real-time inference.

1 Introduction

Ultrasound image segmentation is a long-standing challenge in medical image
analysis, playing a crucial role in applications such as robot-assisted imaging
[18,38], cardiac function analysis [41,49,50], and real-time disease monitoring
[24,2]. However, ultrasound images are difficult to segment due to their low
signal-to-noise ratio, speckle noise, and high anatomical variability across pa-
tients [27]. Furthermore, anatomical boundaries in ultrasound images are often
indistinct and ambiguous, complicating precise delineation. Even for experienced
annotators, inter-observer variability in ultrasound image segmentation is no-
tably higher than in other modalities such as MRI or CT [6,44,51], posing chal-
lenges for automatic segmentation models to achieve accuracy and consistency.
⋆ This work was carried out during the internship of X. Zhang at United Imaging Intelligence.
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In response to these challenges, deep learning-based approaches have made
significant progress in ultrasound image segmentation, with CNN-based [35,16]
and transformer-based architectures [36,13] trained in a supervised manner.
However, these models often struggle to generalize to unseen ultrasound distribu-
tions, making deployment in diverse clinical scenarios challenging. Their adapt-
ability to new classes and tasks is further constrained by the reliance on costly,
task-specific annotations. Moreover, while some real-time approaches [29,43] im-
prove efficiency, they typically fail to achieve state-of-the-art performance.

Recently, vision foundation models [5,42] have emerged as a promising alter-
native to overcome these challenges. Pre-trained on large-scale, general-purpose
datasets, these models capture broad visual representations, enabling them to
generalize across diverse tasks and imaging domains [11]. Inspired by segmentation-
specialized foundation models such as SAM [19], several approaches [9,33,23]
have been proposed to adapt SAM for ultrasound segmentation. However, these
methods are often constrained by single-scale feature extraction, despite the cru-
cial role of multi-scale representation in segmentation [35,8]. Furthermore, they
do not exploit complementary vision foundation models like DINOv2 [28], which
capture rich semantic representations crucial for ultrasound image segmentation,
where anatomical boundaries are often indistinct and ambiguous.

To address these limitations, we propose a novel approach that adapts hier-
archical encoder of vision foundation model Hiera [37], which not only generates
multi-scale features but also maximizes efficiency, achieving up to 2.3× speedup
over traditional ViTs [37]. These multi-scale features are further interleaved with
DINOv2 features to leverage visual semantics and enhance visual expressiveness.
The enriched features are then decoded to generate precise and robust segmenta-
tions. Our method is evaluated on six public datasets and one in-house dataset,
spanning cardiac and thyroid ultrasound segmentation. We demonstrate that
our approach outperforms existing methods on public benchmarks, achieving
state-of-the-art performance while maintaining real-time inference speeds.

Our contributions are as follows: (1) We propose a novel approach that
adapts Hiera encoders and integrates DINOv2 features through feature interleav-
ing to enhance visual representation for improved ultrasound segmentation. (2)
Our method shows strong generalization under limited supervision, outperform-
ing nnUNet by over 20% on average in cardiac segmentation when all trained
on 1% and 10% of the data. (3) We achieve state-of-the-art performance on CA-
MUS and TN3K based on region-overlap metrics while consistently outperform-
ing baselines across other datasets. Additionally, our method enables real-time
inference at ∼77 frames per second (FPS) with TensorRT on a single GPU.

2 Related works

Ultrasound image segmentation has been extensively studied and can be
broadly categorized into CNN-based approaches [35,16,4,40,41] and Transformer-
based approaches [8,45,3]. More recently, vision foundation models like SAM [19]
have been explored for medical image segmentation due to their strong gener-
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alization capabilities [26]. For instance, SonoSAM [33] and SAMUS [23] adapt
SAM for ultrasound segmentation, while MemSAM [9] extends its application
to ultrasound videos by incorporating a memory attention mechanism. However,
these SAM-based approaches primarily operate on a single feature scale, limiting
their ability to capture multi-scale contextual information. In contrast, we adapt
Hiera [37] in SAM2 [32] for multi-scale feature extraction and integrate DINOv2
[28] image encoder to enhance visual feature representation, providing a richer
and more robust understanding of ultrasound images.
Real-time ultrasound segmentation in clinical applications predominantly
relies on CNN-based architectures [25,43,10], with most efforts focused on op-
timizing UNet by making it more lightweight [14] and improving robustness
to distribution shifts [29]. However, these methods often fall short of achieving
state-of-the-art performance and lack integration with recent advancements in
vision foundation models and segmentation techniques. In contrast, our method
not only attains state-of-the-art performance but also maintains computational
efficiency, achieving ∼77 FPS during inference when converted to TensorRT,
making it well-suited for real-time clinical applications.
Parameter-efficient fine-tuning of vision foundation models optimizes
adaptability while minimizing computational cost. Inspired by prefix-tuning in
NLP [21], visual prompt tuning [17] prepends learnable embeddings to image
patches. LoRA [15] and its variants [31,47] modify low-rank attention weights for
efficient adaptation. Adapters, small trainable modules in frozen networks, en-
hance flexibility [34], with recent work improving the parameter-accuracy trade-
off [39]. We extend these ideas by designing adapters for hierarchical encoder
and developing a multiscale decoder for optimal performance-efficiency balance.

3 Methods

Let I ∈ RH×W be a 2D ultrasound image with imaging function I : Ω →
[0, 1] over domain Ω. Our goal is to predict a pixel-wise segmentation map S̄ ∈
{0, . . . , C − 1}H×W using our framework (Fig. 1 (a)). The model outputs logits
Ŝ ∈ RC×H×W , where the final segmentation is obtained via argmax over the
class dimension, aiming for S̄ to match ground truth S. As shown in Fig. 1 (a),
the framework comprises (1) a Hiera adapter, (2) interleaved DINOv2 features in
the encoding pathway, and (3) a hierarchical decoder that processes multi-scale
features to produce pixel-wise logits.
Hiera adapter. We introduce a lightweight adapter (Fig. 1 (b)) positioned
after the skip connection in Hiera’s multi-scale attention block built on MViTv2
[22]. Let X ∈ Rb×h×w×d be the output of this block, where b is the batch size,
(h,w) are spatial dimensions, and d is hidden dimension. The adapter follows a
bottleneck structure with a skip connection and is defined as:

Adapter(X) = σ (XWdown + bdown)Wup + bup +X, (1)

where Wdown ∈ Rd×r and bdown ∈ Rr are the weights and biases of the down-
projection linear layer, while Wup ∈ Rr×d and bup ∈ Rd correspond to the
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Fig. 1. We adapt Hiera to extract multi-scale features, interleaved with DINOv2 fea-
tures and decoded by a hierarchical decoder. Red blocks denote trainable parameters.

up-projection layer. σ(·) denotes activation function. We set r = d/4 and use
GELU activation. During training, only the adapter parameters are updated,
enabling efficient fine-tuning. The Hiera encoder extracts multi-scale features at
N levels fhiera(I) = {Fh

1 , F
h
2 , . . . , F

h
N}, where Fh

n ∈ Rb×hn×wn×dhiera represents
feature at scale n, with spatial dimensions (hn, wn) and feature dimension dhiera.
Feature interleaving. To enhance semantic representation, we incorporate an
auxiliary DINOv2 encoder. We do not finetune or adapt DINOv2, as its large-
scale self-supervised contrastive training equips it with a strong ability to cap-
ture generalized structure and texture, ensuring robust generalization across
diverse image distributions. The extracted features fdino(I) ∈ Rb×h×w×ddino are
resized via bilinear interpolation to match the spatial dimensions at each scale
n. Instead of concatenation, we apply an interleaving strategy by merging fea-
tures slice by slice along channel dimensions Fn = Interleave(Fh

n , F
d
n), where

F d
n ∈ Rb×hn×wn×ddino are the spatially aligned DINOv2 features. Since the num-

ber of channels in DINOv2 and Hiera do not match (ddino ̸= dhiera), we introduce
a projection layer with weights Wproj ∈ Rddino×dhiera and biases bproj ∈ Rdhiera to
align feature channels before interleaving. Final hierarchical representation is:

F = {F1, . . . , FN}, Fn ∈ Rb×hn×wn×2dhiera . (2)

By feature interleaving, we ensure a more fine-grained fusion of local (Hiera) and
global (DINOv2) features, improving feature expressiveness across scales.
Hierarchical decoder. To decode the multi-scale features from Eq. (2), we
propose a hierarchical decoder that progressively fuses coarse-to-fine representa-
tions. At each scale, it upsamples the coarse feature map via transposed convolu-
tion, integrates finer-scale features through concatenation, and refines them with
a convolutional block. This ensures effective spatial propagation while preserving
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Fig. 2. Qualitative evaluation on cardiac ultrasound datasets, with average DSC com-
puted for each method against ground truth of left ventricle (gray) and atrium (white).

multi-scale context (Fig. 1 (c)). The final projection head combines upsampling
and convolution layers to refine features to the original resolution, reconstructing
dense pixel-wise logits while balancing accuracy and computational efficiency.

4 Experiments

Datasets and preprocessing. We evaluate our approach on six public and
one in-house 2D ultrasound datasets covering cardiac and thyroid segmenta-
tion. For cardiac, we extracted end-diastole and end-systole frames in two- and
four-chamber views with left ventricle and atrium annotations: (1) CAMUS [20]
(train/val/test = 1,200/400/400 cases from 500 patients), (2) CardiacUDA [46]
(484/105/145 from 149 patients in Site G). For thyroid, we followed preprocess-
ing in [12] and evaluated (3) TN3K [12] (2,303/576/614), (4) DDTI [30] (637
test cases for TN3K-trained models), (5) Stanford [1] (10,358/3,453/3,453), (6)
TG3K [12] (2,580/646/359), and (7) an in-house dataset (17,388/2,700/3,280).
All images were resized to 224× 224.
Baselines. We evaluated CNN-based methods: (1) UNet [35], (2) nnUNet [16];
transformer-based: (3) MedNeXt [36], (4) SwinUNETR [13]; and SAM-based
approaches: (5) SAMUS [23], (6) MedSAM2 [52]. We also included MemSAM
[9] for CAMUS and SHAN [48] for TN3K. All baselines used default settings.
Implementation details. All experiments were implemented in PyTorch and
run on NVIDIA L40s GPUs (48 GB). Our hierarchical decoder uses convolution
channels of 256, 128, and 64. We trained for 300 epochs with DiceCELoss from
MONAI [7], selecting the model with the lowest validation loss. Data augmenta-
tion included flipping, rotation, scaling, contrast adjustment, Gaussian noise, and
smoothing (probability = 0.5). Optimization used Adam with a linear warmup
(0 to 1e−4) and cosine decay. Feature extraction employed Hiera-L (dhiera = 256)
as the image encoder and ViT-S-14 (ddino = 384) for DINOv2.

5 Results

Segmentation accuracy. We present our main quantitative analysis of seg-
mentation performance in Tab. 1 for cardiac ultrasound and Tab. 2 for thyroid ul-
trasound. In both tables, our proposed approach (last row) consistently achieves



6 X. Zhang et al.

Table 1. Quantitative evaluation on cardiac ultrasound datasets under different super-
vision levels (1%, 10%, 100%) using Dice Score (DSC) and Hausdorff Distance (HD),
averaged over the left ventricle and atrium. Units: DSC (%), HD (px). The best method
is bolded, and the second-best is underlined.

CAMUS [20] CardiacUDA [46]

1% 10% 100% 1% 10% 100%

DSC ↑ HD ↓ DSC ↑ HD ↓ DSC ↑ HD ↓ DSC ↑ HD ↓ DSC ↑ HD ↓ DSC ↑ HD ↓

UNet [35] 59.49 51.51 80.14 26.36 87.70 15.05 34.65 41.04 72.83 26.24 81.69 20.78
nnUNet [16] 67.02 54.22 89.36 8.83 91.69 6.35 35.48 58.94 49.49 34.12 90.39 8.32

MedNeXt [36] 63.30 48.23 84.73 26.16 89.49 9.83 19.05 158.71 70.97 32.59 85.54 8.34
SwinUNETR [13] 71.77 48.80 84.99 23.81 89.36 12.24 51.54 90.38 81.44 24.11 85.81 9.94

SAMUS [23] 75.00 26.29 87.43 16.24 91.11 8.79 63.65 23.91 82.10 10.15 86.14 7.70
MedSAM2 [52] 9.75 137.29 44.24 42.21 84.76 12.96 3.18 154.61 3.82 151.34 75.78 12.95
Ours 81.96 17.16 90.30 8.44 92.01 6.75 65.84 23.57 82.38 11.07 87.44 6.45

Table 2. Quantitative evaluation on thyroid ultrasound datasets using Dice Score
(DSC) and 95th-percentile Hausdorff Distance (HD95).Units: DSC (%), HD95 (px).

TN3K [12] DDTI [30] Stanford [1] TG3K [12] In-house

DSC ↑ HD95 ↓ DSC ↑ HD95 ↓ DSC ↑ HD95 ↓ DSC ↑ HD95 ↓ DSC ↑ HD95 ↓

UNet [35] 67.93 41.26 48.43 52.60 89.09 18.96 70.27 65.88 68.50 60.72
nnUNet [16] 85.13 17.24 73.26 40.43 96.92 2.72 77.50 22.52 79.38 18.59

MedNeXt [36] 70.77 32.58 71.59 40.02 97.33 2.59 77.13 40.42 79.75 20.11
SwinUNETR [13] 71.84 37.89 70.59 41.76 97.63 2.52 69.72 43.37 76.21 39.52

SAMUS [23] 82.60 18.18 77.48 33.53 96.36 2.70 33.18 58.15 78.31 32.61
MedSAM2 [52] 69.02 31.43 69.69 39.02 87.20 9.58 75.86 21.10 79.47 18.70
Ours 86.01 15.43 81.52 26.68 97.33 2.23 83.04 12.55 82.59 17.11

the best overall performance, ranking first in 9 out of 11 metrics across DSC and
HD/HD95, demonstrating the effectiveness and robustness. We further extend
our comparison with SOTA methods on CAMUS (Tab. 3) and TN3K (Tab. 4).
Our proposed approach consistently outperforms existing SOTA methods in re-
gion overlap metrics in terms of ACC, DSC, and IoU while maintaining compet-
itive performance in distance-based metrics in terms of HD95 and ASD across
both datasets. These results further validate the effectiveness of our approach.
Data efficiency and adaptability. Furthermore, as shown in Tab. 1, our
approach remains highly effective even under limited supervision, significantly
outperforming established baselines when trained with only 1% and 10% of the
training data. Specifically, our method surpasses state-of-the-art nnUNet by an
average of ∼23.6% in DSC and outperforms transformer-based approaches like
SwinUNETR by ∼7.7%, while also demonstrating superiority over SAM-based
approaches such as SAMUS. This validates the adaptability of our method, which
achieves strong performance without requiring extensive labeled data. The qual-
itative results in Fig. 2 further support this, showing smoother boundaries and
better alignment with the ground truth compared to other approaches.
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Fig. 3. Qualitative evaluation on thyroid ultrasound
datasets, with DSC computed for each method
against ground truth. First three rows correspond
to nodules, while the last row represents gland.
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Fig. 4. Qualitative evaluation of the semantic ex-
pressiveness of DINOv2 features visualized by plot-
ting the first three principal components. Ground
truth labels are overlaid as contours for reference.
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Cross-dataset generalization. Our method demonstrates strong generaliza-
tion capability when trained on TN3K and tested on DDTI, as shown in the
second column of Tab. 2, surpassing the second-best method (SAMUS) by more
than 4%. The qualitative results in Fig. 3 further validate this improvement.

In-house evaluation. To assess real-world applicability, we computed image-
level detection metrics, including precision, recall, specificity, and F1-score, on
our in-house dataset (Tab. 5). This dataset presents a significant challenge since
the thyroid gland may not always be present in the image, as in Fig. 5 (e.g., sam-
ple 4). We define the classification metrics as follows: (1) TP: Prediction exists
when the ground truth (GT) exists, and IoU > threshold. (2) FN: GT exists, but
the prediction is missing or IoU ≤ threshold. (3) TN: Both GT and prediction are
empty. (4) FP: GT is empty, but the prediction exists. We set threshold=0.25.
Our method achieves the highest recall (98.41%) and F1-score (99.20%), demon-
strating its ability to detect nearly all segmentations while maintaining a strong
balance with precision (87.21%) and specificity (75.27%). Compared to others,
nnUNet and MedNeXt exhibit strong specificity but slightly lower recall, while
SwinUNETR and UNet tend to over-segment, leading to poor specificity. No-
tably, SAMUS achieves the highest precision (99.71%) and specificity (99.50%),
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Table 3. Comparison of left ventricle seg-
mentation with SOTA methods on CA-
MUS dataset. Units: DSC (%), IoU (%),
HD95 (mm), ASD (mm).

Method DSC ↑ IoU ↑ HD95 ↓ ASD ↓

SwinUNet 88.84 80.33 6.10 2.60
H2Former 91.31 84.30 5.27 2.05

MedSAM 85.42 75.14 8.42 3.34
MSA 88.03 78.98 7.53 2.85
SAMed 87.45 78.14 9.17 3.10
SonoSAM 89.80 81.79 6.60 2.45
MemSAM 93.31 87.61 3.82 1.57
Ours 93.80 88.49 4.80 1.90

Table 4. Comparison with SOTA methods
on the TN3K dataset. Accuracy is denoted
as ACC. Units: ACC (%), DSC (%), IoU
(%), HD95 (px).

Method ACC ↑ IoU ↑ DSC↑ HD95↓

TRFE 96.71 68.33 81.91 17.96
SegNet 96.72 66.54 79.91 17.13
DeepLabv3 97.19 70.60 82.77 13.92
TRFE+ 97.04 71.38 83.30 13.23
SHAN 96.73 73.59 84.61 4.05
Ours 97.60 78.13 86.01 15.42

Table 5. Quantitative image-level evalu-
ation on in-house ultrasound datasets. All
values are reported as percentages (%).

Model Precision ↑ Recall ↑ Specificity ↑ F1-Score ↑

UNet 64.75 93.92 12.41 96.86
nnUNet 91.97 93.48 86.02 96.63

MedNeXt 93.90 86.96 90.32 93.03
SwinUNETR 62.09 95.61 0.00 97.75

SAMUS 99.71 98.26 99.50 99.12
MedSAM2 96.67 85.61 94.95 92.25
Ours 87.21 98.41 75.27 99.20

Table 6. Ablation study on CAMUS: (1)
Hierarchical decoder (H-Dec.), (2) Hiera
adapter (H-Adp.), (3) DINOv2 feature in-
tegration, and (4) Feature interleaving.
Units: DSC (%), HD (px)

H-Dec. H-Adp. DINOv2 Interleave DSC ↑ HD ↓

✗ ✗ ✗ ✗ 78.23 30.98
✓ ✗ ✗ ✗ 90.85 9.42
✓ ✓ ✗ ✗ 91.89 6.84
✓ ✓ ✓ ✗ 91.90 6.78
✓ ✓ ✓ ✓ 92.01 6.75

while our method remains comparable, with superior recall and F1-score, indi-
cating its robustness in detecting segmentations with minimal missing regions.
Inference speed. Our method runs at ∼30 FPS on a single GPU and ∼77 FPS
with TensorRT when tested on 224×224 images. This is slower than lightweight
CNNs but faster than foundation model-based approaches like SAMUS (15 FPS)
and MedSAM2 (17 FPS) on the same GPU, due to efficient adaptation of Hiera.
Ablation study. To assess the impact of each component, we perform an ab-
lation study in Tab. 6. The first row serves as a baseline with a convolutional
decoder processing the finest-scale SAM2 features without adaptation. The sec-
ond row adds our hierarchical decoder for multi-scale decoding. The third row
incorporates the Hiera adapter for enhanced feature refinement, while the fourth
row integrates DINOv2 features via concatenation. Finally, our full model (last
row) with feature interleaving achieves the best DSC and HD, demonstrating
the effectiveness of our design choices. The integration of DINOv2 is further val-
idated in Fig. 4, where the first three principal components align with ground
truth anatomical structures, highlighting its role in capturing meaningful seman-
tics for segmenting indistinct ultrasound boundaries.

6 Conclusion

We propose a method for adapting vision foundation models to ultrasound seg-
mentation, introducing a Hiera adapter for hierarchical feature extraction and
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integrating DINOv2 for enhanced visual representation. The enriched multi-scale
features are then decoded to generate precise segmentation masks. Evaluated on
seven ultrasound datasets, our approach consistently outperforms baselines and
achieves SOTA performance. Notably, our model enables real-time segmentation
at ∼77 FPS with TensorRT. This work demonstrates the potential of combining
foundation models with supervised training on limited data for high-quality real-
time segmentation, paving the way for broader applications in medical imaging.
Future work will explore extensions to video and 3D imaging.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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