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Abstract. Hyperspectral imaging (HSI) provides rich spectral informa-
tion for medical imaging, yet encounters significant challenges due to
data limitations and hardware variations. We introduce SAMSA, a novel
interactive segmentation framework that combines an RGB foundation
model with spectral analysis. SAMSA efficiently utilizes user clicks to
guide both RGB segmentation and spectral similarity computations. The
method addresses key limitations in HSI segmentation through a unique
spectral feature fusion strategy that operates independently of spectral
band count and resolution. Performance evaluation on publicly avail-
able datasets has shown 81.0% 1-click and 93.4% 5-click DICE on a
neurosurgical and 81.1% 1-click and 89.2% 5-click DICE on an intraop-
erative porcine hyperspectral dataset. Experimental results demonstrate
SAMSA’s effectiveness in few-shot and zero-shot learning scenarios and
using minimal training examples. Our approach enables seamless inte-
gration of datasets with different spectral characteristics, providing a
flexible framework for hyperspectral medical image analysis.
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1 Introduction

Hyperspectral imaging (HSI) offers superior intraoperative guidance through
its rich spectral information, allowing improved differentiation between visually
similar tissues [3, 18]. The diverse range of HSI hardware, with varying spectral
ranges and resolutions, creates significant interoperability challenges that im-
pede data standardization [1]. This technical fragmentation, coupled with HST’s
limited clinical adoption, has resulted in a shortage of comprehensive datasets,
presenting a substantial obstacle for machine learning applications [7]. Despite
these challenges, recent advances have demonstrated HSI’s potential for intraop-
erative segmentation in neurosurgery [18,15,9] and on porcine organs [17,19].
However, developing generalized models that account for hardware variations
remains unsolved. Classical Spectral Comparison Functions (SCF) such as Spec-
tral Angle (SA) [2] and Pearson’s Correlation Coefficient (PCC) [12] offer highly



2 A. Roddan et al.

adaptable approaches for comparing spectra for manual image segmentation.
Their untrained nature allows them to generalize to new scenarios without re-
quiring additional data, functioning with any spectral range or number of bands.
These methods typically operate by using a reference point (user click) to com-
pare against the rest of the image, making them inherently interactive. However,
they face limitations due to the "shading problem" where semantic objects ex-
hibit different spectral signatures, and the challenge of establishing consistent
segmentation thresholds within and across images.

Interactive segmentation is particularly valuable in medical imaging, as it
leverages expert input to improve performance compared to fully automated
methods [23, 20, 21] and enables segmentation of previously unseen tissue classes
— a vital capability during surgical procedures where unexpected pathologi-
cal findings may occur. The shared interactive nature of both classical spectral
methods and modern RGB interactive segmentation presents a natural oppor-
tunity to combine these approaches, allowing a single user click to serve dual
purposes namely, guiding the RGB-based model while simultaneously providing
a reference point for spectral comparison. While powerful interactive models like
Segment Anything and its successor SAM2 [8, 14] have revolutionized RGB seg-
mentation, these advances cannot be directly applied to HST due to fundamental
differences in data characteristics.

The predominant strategy in existing research has been to transform modal-
ities such as CT or MRI into grayscale representations before feeding them
into foundation models like SAM [10,22]. This approach, however, frequently
fails to capitalize on the distinct advantages that each imaging modality offers.
Moving beyond conventional RGB-based representations requires novel integra-
tion methodologies, particularly since current multimodal architectures have yet
to incorporate spectral fusion techniques. Consequently, established approaches
cannot be readily adapted to address these hyperspectral challenges.

In this work, we propose an interactive image segmentation approach by
combining SAM2 with spectral analysis techniques to overcome HSI’s data lim-
itations. Our approach leverages the advantages of large-scale RGB foundation
models and integrating HSI’s rich spectral information. Specifically, we con-
tribute: (1) An interactive segmentation framework for HSI, utilizing a dual-
input approach that efficiently leverages the same user input (clicks) in two
complementary ways: to guide an RGB foundation model and to compute SCF
measurements in HST data, enhancing segmentation performance. (2) We demon-
strate effectiveness in both few-shot and zero-shot learning scenarios for tumor
classification, showing robust performance even with extremely limited training
examples and on unseen test cases. (3) The first HSI machine learning frame-
work that functions independently of HSI band count and wavelength variations,
enabling the combination of datasets with different spectral characteristics and
semantic classes into a unified training approach.



SAMSA 3

& {7 SAMSA

1
Image i L Similarity
Psuedo RGB Encoder | !
=t ) e
ot MASK Fusion
= \O/ | DECODER Module
o O
f—
Prompt il:li_
Encoder| : [ ]}
1 ! y
\0; /
//
Decoded g
Embedding &

Specral Angle

Fig. 1: SAMSA outline - a single click in the pseudo RGB is used to guide both
the RGB and spectral branch.

2 Methodology

Given a hyperspectral image X € R?*WXC where H and W denote the spatial
dimensions and C represents the number of spectral channels, our goal is to per-
form interactive foreground/background segmentation based on user-provided
click positions. Additionally, we have available a corresponding pseudo RGB im-
age X,gp € RIXWX3 and a ground truth label map Y € [0, ..., N]HXW with N
the number of classes. Let Z = {I; ;} be a set of user-provided click positions,
where each I, ; = (i, j) corresponds to a pixel location in the image. Each model
outputs a foreground/background similarity map Y e [0, 1]7>W with 0 repre-
senting no similarity and 1 representing strong similarity to the clicked pixel(s).

Spectral Comparison Function (SCF). To model the spectral character-
istics, we employ a spectral similarity approach based on click positions. Given
multiple clicks Z in the region of interest, we compute the similarity for each
pixel in the image with respect to all selected spectra S; ; = X(I; ;) and as-
sign the highest similarity score. Finally, the SCF outputs a similarity map
Yscr = SCF(X,T). SA [2] measures the similarity between two spectra using
the angle between them in the spectral space. The spectra can also be compared
using PCC [12] which quantifies the linear relationship between the reference
spectra and candidate spectra. PCC specifically focuses on modeling negative
correlations between spectra distinguishing between positive and negative rela-
tionships. While SA and PCC effectively measure similarity between spectral
samples, such as those derived from click data, they do not establish decision
boundaries since they are not based on learned models. To address this, we
employ histogram equalization to maximize the information content of the sim-
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ilarity maps by increasing contrast and improving regional separability [6]. We
denote this method as SCFEgqualized-

RGB Interactive Segmentation. To leverage powerful RGB foundational
models for HSI, we first generate pseudo RGB images from the HSI data through
spectral band selection and combination [4]. SAM2 [14] is utilized as our RGB
segmentation backbone due to its state-of-the-art performance in interactive seg-
mentation tasks and its robust generalization capabilities across diverse imaging
domains, including medical [13]. SAM2 generates confidence maps Yars =
SAM2(X, g4, Z) indicating the likelihood of each pixel belonging to the fore-
ground from the pseudo RGB image. SAM2pg,..(-) denotes the SAM2-Large
model with frozen weights, and SAM27y,cq(+) denotes the fine-tuned version.

RGB and Spectral Similarity. Both spectral and RGB-based models offer
complementary information for image segmentation. While SAM2 processes only
RGB information, the combination complements our spectral similarity-based
segmentation by capturing spatial and contextual features that may not be evi-
dent in pure spectral analysis. To enhance segmentation quality, we explored two
initial approaches for fusing the spectral and spatial similarity maps. The first is
a simple intersection method where the similarity maps are directly multiplied:
}A/SAMQInteTSCC‘ = YSAMQ -YSCF. This multiplication produces high values only in
regions where both modalities agree, effectively creating a logical AND opera-
tion that requires consensus between spectral and spatial information for pixel
classification. For a more sophisticated integration, we implement a UNet archi-
tecture [16] that takes the similarity maps Ysanra and Ysor as direct inputs to
learn optimal fusion strategies: YA—SAMQUNet = SAMZUNet(YSAMQ, YSCF), where
SAM2y et (-) represents the trained fusion UNet model. Unlike the determinis-
tic intersection approach, this learnable fusion should uncover complementary
spatial relationships between modalities.

SAMSA. To further improve segmentation, we introduce SAMSA, a novel
model that fuses spectral similarity with high-resolution spatial features from
SAM2. Unlike the aforementioned fusion approaches that combine outputs after
segmentation, SAMSA integrates spectral information directly into the upscaling
process of the SAM2 mask decoder. A high-level overview of this process is shown
in Fig. 1. Given Xgrgp and Z, SAMSA follows the standard SAM2 processing
pipeline and additionally integrates the spectral information. The spectral simi-
larity map YSC r is fused with the high-resolution feature maps Sy extracted from
SAMZ2’s encoder, enhancing segmentation decisions based on spectral properties.
This allows the model to leverage spectral characteristics that are not visible in
pseudo RGB while maintaining SAM2’s spatial precision. We freeze the prompt
and image encoders from SAM2, fine-tuning only the lightweight mask decoder.
This enables SAMSA to generalize to medical datasets with minimal training
data while learning how to effectively combine spatial and spectral information.
The additional spectral comparison and feature map multiplication introduce
minimal computational overhead, with an estimated 1.5 to 2 percent increase
in FLOPs compared to SAM2, allowing SAMSA to maintain real-time perfor-
mance.
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Table 1: Macro Results: Performance of models with varying input modalities
(Mod.) and user clicks. Bold indicates peak performance per metric and dataset.

Heipor Hib Dataset

Mod. |Model 1 click 5 clicks 1 click 5 clicks

D@0.5 D@Max| D@0.5| D@O0.5 D@Max D@0.5
PCC 0.122 0.472 | 0.117 [0.373F0-019 (. 8g5+0-031 [ 375+0-018
HSI |[SA 0.117 0.489 | 0.117 |0.374%9-019 (.889%0:035 | o 374+0:019
SA Bquatized 0.205 0.487 | 0.137 |0.568%0-038 (,885%0-034 | 9 482+0-033
RGE SAM2Base 0.600 0.773 | 0.643 [0.523F0-056 (0 727F0-0151( 501+0-069
SAM27uned 0.806 0.864 | 0.886 |0.771F99%9 (90510036 | 0 912+0:025
SAM2SA 1ntersec.| 0.634  0.755 | 0.647 [0.605=° 7% (.832F0:0%31(.674F0-053
Fusion|SAM2SAyne: | 0.692 0.798 | 0.771 |0.650T%115 .778%10:123 | 0. 673%0-096
SAMSA (ours) [0.811 0.863 | 0.892 |0.810%°-95° 0.929+0:928|0,934+0-031

3 Experimental Results

For training of the fusion models we mainly follow SAM’s optimization procedure
[8]. All models are trained with a combined loss function using DICE and cross-
entropy loss with equal weighting, excluding any unlabeled regions. Complete
implementation details are provided in the accompanying source code, accessible
upon acceptance of this manuscript?.

Datasets. The HiB dataset includes hyperspectral and pseudo RGB im-
ages from 34 patients, with patient-wise fold splits [9]. It features four labeled
classes: Background, Tumor, Healthy, and Vasculature, plus an Unlabeled cat-
egory. Following preprocessing as in [11], the dataset consists of 128 spectral
bands. The HeiPorSPECTRAL (Heipor) dataset, collected from 20 porcine
subjects at Heidelberg University Hospital, provides HSI data with annotations
for 20 distinct organs. Spectral information ranges from 500 nm to 1000 nm, and
corresponding RGB images are derived from the HSI data [19].

Evaluation Protocol We evaluate each model on foreground /background
segmentation using a single user click, following SAM2’s evaluation procedure
[8]. For each class, we select a click position at the center of the largest connected
component in the foreground region to avoid boundary ambiguity. We report two
key metrics: D@0.5 - The DICE score [5] using the standard decision boundary
of 0.5. D@Max - The max DICE across all thresholds, representing optimal
performance without predefined decision boundaries.

We report macro-averaged (Macro) and per-class results. We also evaluate
multi-click performance by placing subsequent clicks on the target foreground
class. Finally, for trainable models, we conduct N-shot evaluations (1, 3, 5, 10,
and 20 examples) to analyze the relationship between training data availability
and segmentation quality.

In our evaluation of spectral similarity functions, SA outperformed PCC with
improvements of +0.017 on Heipor and 40.004 on Hib datasets when measured

! https://github.com/CVRS-Hamlyn/SAMSA
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by D@Max (table 1). We further enhanced SA with equalization (SAgqualized);
improving contrast around the 0.5 threshold to better align with RGB models,
and adopted this as our spectral analysis method for subsequent experiments.

For RGB-only performance (table 1), SAM2p,;. demonstrated reasonable
generalization to medical domains, achieving 0.600 Macro D@0.5 on Heipor.
However, table 2 reveals significant weaknesses on the Hib dataset’s Vascular
class (0.335), indicating limited generalization to domain-specific medical struc-
tures. Fine-tuning substantially improved performance, with SAM27,,,cq achiev-
ing 0.757 on Vascular and 0.869 on Background classes.

Our analysis of fusion strategies revealed that late fusion approaches namely,
SAM2SA 1 tersec. and SAM2SA ner, underperformed compared to SAM27yped,
though they improved upon SAM2pg,s.. This suggests spectral information re-
quires earlier integration to enhance segmentation performance, which we im-
plemented in SAMSA.

SAMSA consistently outperformed SAM27,neq across all classes on D@Q.5,
with notable improvements of +0.056 for Healthy and 40.06 for Tumor classes.
Macro D@OQ.5 scores increased by +0.039 for Hib and +0.005 for Heipor. The
modest gains on Heipor can be attributed to its RGB-oriented annotations and
predominance of large, centered objects (fig. 3). These characteristics are partic-
ularly favorable for RGB-only models that detect visual boundaries, as evidenced
by the strong zero-shot performance of SAM2p,s. (0.773), which trails the fine-
tuned version by only —0.091 D@Q.5. For this reason, we focused our per-class
metric analysis on the Hib dataset, where spectral information provides more
substantial benefits for segmentation.

As expected, additional clicks improved segmentation performance for all
fine-tuned models. SAMSA showed significant improvements with 5-click inputs,
increasing performance of D@Q0.5 by +0.081 on Heipor and +0.124 on Hib. In
fig. 2 we demonstrate SAMSA’s superiority over SAM27,,,.q across different click
counts on Hib, achieving 0.95 Macro D@0.5 with 5 clicks. Furthermore, with
only 20 training examples, SAMSA achieves 0.79 Macro D@0.5 for single-click
segmentation. Leveraging foundation models, both SAMSA and SAM2 perform
well in limited-data scenarios. Notably, the integration of spectral information
consistently enhances the training process, with a clear performance gap between
SAMSA and SAM27,,,,.q emerging at just 5 training examples, highlighting the
advantage of spectral information in low-data regimes.

Generalization Results. We conduct a leave-one-class-out experiment on
both fine-tuned SAM2 and SAMSA by removing the Tumor class from training
while testing across all classes on Hib, simulating real-world scenarios requiring
identification of novel structures without prior supervision.

As seen in table 2, when the tumor class is excluded from training, SAM27,,,cq
performance drops by 0.14, falling below even SAM2p, . performance for tumor
detection. Despite this, its overall Macro performance remains significantly bet-
ter (40.185). Similarly, SAMSA experiences a performance decrease on tumor
class (—0.17), but crucially maintains the highest tumor detection capability.
Additionally, SAMSA achieves a higher overall Macro result (+0.052), suggest-



SAMSA 7

==
~—

0.60 /
o
0.75 Model 0.55 Model
—+= SAM27yneq —+— SAM21yned
Number of clicks SAMSA Number of shots SAMSA

1 3 5 7 9 11 13 15 17 19 1 3 5 10 20 Full Dataset

Fig. 2: Performance analysis on Hib dataset: a) Number of clicks and b) Number
of shots in training and correlation to model performance.

Table 2: Class results D@QQ.5 for Hib dataset using 1 click.
Model Macro  Background Healthy Vascular Tumor
SAEqualized 0.568i0'038 0.613i04109 0.815i0.093 0.506i04130 0.339i0A100
SAM2Base 0.523i0‘056 0'552i0‘079 0.586i0.083 0'335i0‘095 0.619i0'188
SAM27uneq | 0.77120:099 (.869%0-045  778%0.081 ( 757%0-106 () g78+0.098
SAMSA (ours) |0.810%0-0%0 0.881%0-039 ,834%0-066 g, 790*0-117 @, 738%0-041

0-shot case - excluded Tumor class from train
SAMQTunEd 0.708i0‘055 0.853i0‘063 0.735:t0.080 0'70410‘077 0.538i0'125
SAMSA (ours)|0.760%%-0%3 0.881+0:048 (,821%0-081 0,763%9-09 0,576+0-072

ing that incorporating spectral information provides meaningful advantages for
generalizing to unseen classes.

Secondly, our approach uniquely enables training across datasets with dif-
ferent spectral properties by collapsing spectral information to a single channel
regardless of band count or resolution. In table 3, cross-dataset generalization
(training on one dataset, testing on another) performs poorly even below the
zero-shot SAM2p,,. baseline. However, mixed training significantly improves
results. While SAM27,,,,.4 shows inconsistent benefits from mixed training (im-
proved on Heipor, decreased on Hib), SAMSA maintains balanced performance,

Table 3: Model performance Macro D@0.5 using cross and mixed training

Training— ‘ None ‘ Heipor ‘ Hib ‘ Mixed

HSI Channels| - \ 100 \ 128 \ 238

Num Classes | - ‘ 20 ‘ 4 ‘ 24

Test] ‘Séj‘ﬁi) SAM2 ¢ ) MisA|SAM2 g aniga [FAM2 g nisa
- Tuned Tuned Tuned

Heipor 0.600 0.806 0.811 | 0.445 0.433 | 0.807 0.810

Hib 0.523 0.454 0.497 | 0.771 0.810 | 0.695 0.765
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Fig. 3: Comparison of results. (a) RGB image with vascular click. (b) Correspond-
ing label image, where Tumor is red, Vascular structures are blue, Healthy tissue
is green, Background non-tissue structures are black, and unlabeled regions are
white. (c) SAMSA prediction of (a). (d-f) Probability maps from SAM2, SA,
and SAMSA. (g) RGB image with a small bowel click. (h) Corresponding label
image, where Small Bowel is gray and Background is black. (i) SAMSA predic-
tion of (g).

outperforming SAM27,,.q4 on both datasets (Hib 4+0.07, Heipor +0.003). This
confirms SAMSA’s ability to generalize across heterogeneous HSI datasets with
varying spectral properties and clinical domains.

In fig. 3 we present qualitative results on the Hib dataset. When clicking on
vascular tissue (a), SAM27yneq (d) struggles to effectively segment the vascular
class without spectral information. The SA map (e) clearly identifies vascular
structures but introduces noise around the tumor region. In contrast, SAMSA
(f) produces a well-localized probability map for vascular tissue. For the Heipor
dataset, clicking on small bowel tissue (g) demonstrates SAMSA’s ability to
precisely delineate class boundaries compared to the ground truth (h). We believe
the proposed method can be incorporated in two key ways: 1) to assist efficient
annotation during dataset creation and 2) for intraoperative use as a real-time
decision support tool, enabling surgeons to interactively explore and localize
suspicious regions during procedures.
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4 Conclusion

SAMSA is a unique method for generalizing across different HSI datasets, en-
abling effective segmentation in scenarios with limited training data and di-
verse imaging conditions. The proposed framework’s ability to combine spectral
and RGB information provides significant advantages, particularly in detect-
ing challenging medical structures and maintaining performance across different
datasets. Our approach shows promise in handling unseen classes and adapting
to heterogeneous HSI datasets under low data regimes, opening new possibilities
for flexible and robust hyperspectral interactive medical image analysis.
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