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Abstract. Learning 3D+t shape completion and generation from multi-
view cardiac magnetic resonance (CMR) images requires a large amount
of high-resolution 3D whole-heart segmentations (WHS) to capture shape
priors. In this work, we leverage flow matching techniques to learn deep
generative flows for augmentation, completion, and generation of 3D+t
shapes of four cardiac chambers represented implicitly by segmentations.
Firstly, we introduce a latent rectified flow to generate 3D cardiac shapes
for data augmentation, learned from a limited number of 3D WHS data.
Then, a label completion network is trained on both real and synthetic
data to reconstruct 3D+t shapes from sparse multi-view CMR segmen-
tations. Lastly, we propose CardiacFlow, a novel one-step generative flow
model for efficient 3D+t four-chamber cardiac shape generation, condi-
tioned on the periodic Gaussian kernel encoding of time frames. The
experiments on the WHS datasets demonstrate that flow-based data
augmentation reduces geometric errors by 16% in 3D shape completion.
The evaluation on the UK Biobank dataset validates that CardiacFlow
achieves superior generation quality and periodic consistency compared
to existing baselines. The code of CardiacFlow is released publicly at
https://github.com/m-qiang/CardiacFlow.
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1 Introduction

As the current gold standard imaging modality for assessing cardiac structure
and function, cine cardiac magnetic resonance (CMR) imaging facilitates the
quantitative evaluation of cardiac phenotypes, such as chamber volumes and ejec-
tion fractions [24]. The reconstruction of 3D+t cardiac shape models [4,6,7,20,35]
from CMR images plays an essential role in understanding regional patterns of
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cardiac diseases [2] and conducting electrophysiological and biomechanical stud-
ies of the heart [23,27,29,32]. However, it is a challenging inverse problem to
reconstruct high-resolution four-chamber shapes of the heart from sparse multi-
view CMR sequences. The four cardiac chambers, including the left ventricle
(LV), right ventricle (RV), left atrium (LA), and right atrium (RA), are delin-
eated by stacks of 2D image slices acquired from multiple view planes. Although
there are multiple slices covering the ventricles, the atria are only covered by
one or two slices. The challenges also come from potential motion artefacts and
slice misalignment caused by respiratory motion during image acquisition.

Previous works demonstrated the feasibility of leveraging shape priors from
3D whole-heart segmentations (WHS) of CT scans [11] to learn 3D+t cardiac
shape completion in CMR segmentations [22,36,37,38]. However, this requires
a large amount of 3D WHS data, which are not always available due to data
regulation issues and the expensive cost of image acquisition and annotation.
Existing public WHS datasets [14,21,33,39] only contain dozens of 3D segmen-
tations, which highlight the necessity of data augmentation. Deep generative
models [9,12,13] offer a potential solution to enrich the quantity and variety of
3D cardiac shapes. While deep generative models have been utilised to charac-
terise 3D shape distribution [15] or spatio-temporal motion patterns of the heart
[25,31], their applications to augmenting, completing and generating 3D+t four-
chamber cardiac shapes are still less explored.

Recently, diffusion models have achieved great success in data generation
[10,30]. For efficient training and sampling, latent diffusion model [26] operates in
the latent space and thus is naturally suitable for 3D medical images. Compared
to diffusion models that require considerable training data and thousands of
stochastic sampling steps [10,26,34], latest flow matching approaches [5,18,19]
are data- and time-efficient by learning a continuous normalising flow between
two distributions. In particular, a rectified flow technique [5,17,19] is developed
to learn a straight optimal transport path from noise to data, enabling it to
capture the target distribution and generate data samples in a few steps.

In this work, we propose a novel solution to learn 3D+t four-chamber cardiac
shape completion and generation via flow matching, in which the shapes are
represented implicitly by segmentation maps. The main contributions of this
work are listed as follows:

– We introduce a latent rectified flow to generate synthetic 3D shapes of four
cardiac chambers, learned from a limited number of 3D WHS data via flow
matching. Such data augmentation significantly improves the performance of
3D shape completion.

– A label completion network is trained on both real and synthetic 3D shapes,
and further applied to reconstruct accurate 3D+t cardiac shapes from multi-
view CMR segmentations on the UK Biobank dataset for a large population.

– We propose CardiacFlow, an efficient one-step generative flow model for 3D+t
four-chamber cardiac shape generation. Incorporating periodic Gaussian ker-
nel encoding of time frames and learnable initial values, CardiacFlow achieves
state-of-the-art generation quality and periodic consistency.
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Fig. 1. The procedure of 3D+t cardiac shape completion. (a) An autoencoder is trained
to extract latent vectors from 3D shapes. (b) A LRF is learned to generate 3D shapes
for data augmentation. (c) A LC-U-Net is trained on both real and synthetic data for
3D shape completion. (d) The trained LC-U-Net is applied to 3D+t shape completion.

2 Methods

2.1 Latent Rectified Flow for Data Augmentation

Learning to complete four-chamber cardiac shapes from multi-view segmenta-
tions requires a large amount of training data to capture the shape variation.
Given a limited number of 3D WHS data [14,21,33,39], we introduce flow match-
ing (FM) [18] to generate 3D cardiac shapes for data augmentation.

Flow Matching. Given a noise distribution p(x0) = N (x0; 0, I) and data dis-
tribution q(x1), FM models a generative process by learning a continuous nor-
malising flow from noise x0 ∼ p(x0) to data x1 ∼ q(x1) defined by an ODE:

dxt = vt(xt; θ)dt, x0 ∼ p(x0), t ∈ [0, 1], (1)

where vt is a time-varying vector field parameterised by a neural network with
learnable parameters θ. It defines a probability path pt with xt ∼ pt(x). Ideally,
the path pt should flow from noise to data such that p0(x) = p(x0) and p1(x) =
q(x1). To learn the flow model (1), a conditional FM loss function is defined as:

LCFM(θ) = Et,q(x1),pt(x|x1)

[
∥vt(xt; θ)− ut(xt;x1)∥2

]
. (2)

Such a loss trains the flow (1) to match a conditional flow defined by a vector
field ut conditioned on data x1, where ut is usually constructed as an optimal
transport path ut(xt;x1) = (x1−xt)/(1−t), i.e., the shortest straight path from
noise x0 to data x1 [18,19]. In this case, the flow (1) is also called a rectified flow.
After training, new data samples can be generated by integrating the ODE (1).

Latent Rectified Flow. Instead of learning high-dimensional distributions, FM
can be performed efficiently in a latent space [5]. As shown in Fig. 1-a,b, we train
an autoencoder x̂ = D(E(x)) with encoder E and decoder D to extract latent vec-
tors z1 = E(x) from 3D cardiac segmentations x ∼ q(x). Then, a latent rectified
flow (LRF) is defined as dzt = vt(zt; θ)dt, where the initial value z0 ∼ N (0, I)
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has the same dimensionality as the latent vector z1, and vt is parameterised by
a 3D flow U-Net [10,26,28] with adaptive instance normalisation layers [12].

To train the LRF, we randomly sample t ∈ [0, 1], z0 ∼ N (0, I), and z1 = E(x)
with x ∼ q(x) for each iteration. In order to match the LRF to a straight optimal
transport path, zt is approximated by a linear interpolation zt = (1− t)z0 + tz1
between z0 and z1. Hence, the latent FM loss is reformulated as [5,19]:

LLFM(θ) = Et,q(x),pt(z|z1)
[
∥vt((1− t)z0 + tz1; θ)− (z1 − z0)∥2

]
. (3)

After training, we sample z0 and integrate the LRF by forward Euler method
with T=100 steps, in which the flow U-Net vt is evaluated repeatedly, to generate
a latent vector ẑ1. The 3D segmentation is reconstructed by x̂ = D(ẑ1) as shown
in Fig. 1-b. Note that if the flow trajectory is ideally straight, the forward Euler
method can provide exact ODE solution within one step [19]. In spite of learning
from a limited number of WHS data [14,21,33,39], the LRF is data efficient and
able to generate diverse 3D cardiac shapes for effective data augmentation.

2.2 3D+t Four-Chamber Cardiac Shape Completion

The data augmentation performed by LRF enables us to capture accurate shape
distribution for 3D+t shape completion. Given augmented 3D cardiac segmenta-
tions, a label completion U-Net (LC-U-Net) [28,36,37] is trained to reconstruct
3D cardiac segmentations from multi-view 2D segmentations (Fig. 1-c). The
input multi-view 2D segmentations, including short-axis (SAX) and long-axis
(LAX) views, are synthesised following [36,37,38], incorporating in-plane mo-
tion between SAX slices and misalignment between SAX and LAX views. The
displacements of the slices are simulated as a Gaussian distribution N (0, λ2I),
where λ is the corruption level following a uniform distribution between 0 and 4
mm. For each training epoch, the training data consist of 25% real data collected
from the WHS datasets [14,21,33,39] and 75% synthetic 3D shapes generated by
the LRF. After training, as illustrated in Fig. 1-d, we apply the LC-U-Net to
complete four-chamber cardiac shapes across M=50 time frames of multi-view
CMR segmentations on the UK Biobank (UKB) database [24], curating a 3D+t
four-chamber cardiac shape dataset for a large population.

2.3 CardiacFlow for 3D+t Cardiac Shape Generation

Based on the curated 3D+t cardiac shape dataset, we develop CardiacFlow, an
efficient one-step generative flow that extends LRF to generate spatio-temporal
shapes of four cardiac chambers. Given completed 3D+t segmentations x ∼ q(x)
from the UKB dataset, we train a 3D autoencoder x̂τ = D(E(xτ )) to learn a
latent vector z1,τ = E(xτ ) from 3D shape xτ for time frame τ ∈ {1, ...,M}. As
shown in Fig. 2, CardiacFlow defines a LRF from a learnable frame-conditioned
initial value z0,τ to the latent vector z1,τ for each frame τ , modelled by an ODE:

dzt,τ = vt (zt,τ ; θ) dt, z0,τ = fΘ (ϵx,Kσ(τ)) , t ∈ [0, 1], (4)
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Fig. 2. The architecture of CardiacFlow. Each frame τ is encoded by a PGK Kσ(τ)
and fused with a learnable embedding ϵx (train) or a sampled embedding ϵ̂ (test). The
fusion network predicts a frame-conditioned initial value z0,τ for the LRF to generate
a latent vector z1,τ , which is decoded to a 3D shape xτ = D(z1,τ ).

where vt is parameterised by a 3D U-Net in the latent space, fΘ is a fusion
network, ϵx is a learnable embedding for each training data x, and Kσ(τ) is a
periodic Gaussian kernel (PGK) encoding of time frame τ .

Periodic Gaussian Kernel Encoding. For cardiac 3D+t shape generation,
the heart should have a consistent shape at the start (τ=1) and end (τ=M) of a
cardiac cycle. However, existing generative models [25,31] cannot preserve such
periodic consistency. Instead of using scalar or one-hot conditioning variable,
CardiacFlow employs a PGK Kσ : R → RM to encode time frame τ , based on
the periodicity of heartbeat. The m-th element of the vector Kσ(τ) is defined by
a Gaussian kernel [Kσ(τ)]m ≜ 1√

2πσ
exp(−d(m,τ)2

2σ2 ), where d(m, τ) ≜ |mod(m −
τ +M/2,M)−M/2| is a distance metric, which is symmetric d(m, τ) = d(τ,m)
and periodic d(m +M, τ) = d(m, τ) with period M . As depicted in Fig. 2, the
elements of Kσ(τ) follow a truncated and periodic Gaussian distribution, where
[Kσ(τ)]m achieves maximum when m = τ . For each frame τ , the PGK encoding
allows CardiacFlow to capture the information of neighbouring frames within
period M and guarantees the periodic consistency in a cardiac cycle.

Learnable Initial Value. CardiacFlow aims to generate each frame of the
3D+t cardiac shapes in one step. One key factor is to rectify and straighten
the flow path, such that one step of numerical integration can provide accurate
ODE solution [18,19]. While FM samples random coupling of noise and data
for training [18,19], inspired by [15,31], we assign a low-dimensional learnable
embedding ϵx to each training data x ∼ q(x). A fusion network fΘ with multiple
MLP layers is trained, such that the learnable embedding ϵx is fused with the
frame encoding Kσ(τ) and upsampled to the same size as the latent vector z1,τ .
It provides a learnable frame-conditioned initial value z0,τ = fΘ (ϵx,Kσ(τ)) for
the ODE (4), and therefore CardiacFlow can optimise the initial value and flow
trajectory simultaneously to learn a straight optimal transport path for one-
step generation. For data generation, the learnable embedding ϵx is replaced by
ϵ̂ ∼ N (µϵ, Σϵ), an empirical Gaussian distribution defined by {ϵx}x∼q(x).

Beta Sampling. Another factor for one-step generation is the sampling strategy
[5,16,17]. FM typically samples the time steps t ∈ [0, 1] uniformly during training
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Algorithm 1 Training
1: input: 3D+t shapes q(x), embeddings ϵx
2: repeat
3: x ∼ q(x), τ ∼ Uniform({1, ...,M})
4: z1,τ = E(xτ ), z0,τ = fΘ (ϵx,Kσ(τ))
5: t ∼ Beta(a, b), zt,τ = (1− t)z0,τ + tz1,τ
6: L(θ,Θ, ϵx) = ∥vt(zt,τ ; θ)− (z1,τ − z0,τ )∥2
7: update θ, Θ, ϵx

Algorithm 2 Generation
1: ϵ̂ ∼ N (µϵ, Σϵ)
2: for τ = 1, ...,M do
3: ẑ0,τ = fΘ (ϵ̂,Kσ(τ))
4: ẑ1,τ = ẑ0,τ +

∫ 1

0
vt(ẑt,τ ; θ)dt

5: x̂τ = D(ẑ1,τ )
6: end for
7: return x̂ = {x̂τ}

Table 1. The results of 3D shape completion. A LC-U-Net trained without synthetic
data is compared to LC-U-Nets with data augmentation using VAE or LRF. The bolded
results are significantly better than other methods (t-test, p < 0.05).

Method LV LVM RV LA RA

HD95↓
(mm)

LC-U-Net 2.084±0.630 1.995±0.561 2.435±1.007 3.120±1.010 4.385±1.919
LC-U-Net (VAE) 1.882±0.606 1.870±0.601 2.155±1.161 2.948±0.986 3.999±1.987
LC-U-Net (LRF) 1.769±0.521 1.693±0.492 2.024±0.982 2.675±0.884 3.581±1.697

DSC↑
LC-U-Net 0.955±0.017 0.900±0.027 0.944±0.023 0.929±0.021 0.905±0.039
LC-U-Net (VAE) 0.960±0.014 0.909±0.024 0.952±0.022 0.934±0.021 0.911±0.041
LC-U-Net (LRF) 0.963±0.012 0.917±0.021 0.954±0.020 0.939±0.018 0.918±0.036

[18,19], providing very few samples at t=0 for one-step generation from initial
values [5,16,17]. To alleviate this issue, CardiacFlow samples time t from a Beta
distribution, Beta(a, b), defined on [0, 1] with a=0.1 and b=2.0 [16]. The density
function monotonically decreases so that more samples are drawn near t=0.

The training and generation procedures of CardiacFlow are summarised in
Algorithms 1 and 2. The flow ODE in Algorithm 2 is solved by one step of
forward Euler, i.e., ẑ1,τ = ẑ0,τ +v0(ẑ0,τ ; θ). Note that the Beta sampling used in
training also allows few-step generation, which enhances the quality of generated
shapes by more integration steps. The 3D shape x̂τ = D(ẑ1,τ ) at each frame τ is
reconstructed by decoding the generated latent vector. The 3D+t cardiac shapes
x̂ are generated by iterating over all time frames τ = 1, ...,M .

3 Experiments

Dataset. For 3D cardiac shape augmentation and completion, we collect WHS
data from multiple public datasets including WHS++ [39] and other challenges
[14,21,33], curating 160 3D segmentation maps of 137 CT and 23 MR images after
data cleaning. The cardiac four-chamber shapes are represented by segmentation
maps without the need of original CT or MR images. All segmentation maps are
rigidly aligned to a WHS atlas [40] and clipped to the size of 160×160×192. The
dataset is randomly split by the ratio of 6/1/3 for training, validation and test.

The 3D+t cardiac shape completion and generation are performed on the
segmentation maps of 1,000 UKB CMR scans [24], which are split by the ratio
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of 6/1/3 as well. The 2D+t segmentations in SAX, two- and four-chamber LAX
views are generated using a publicly available method [1] with manual quality
control, including the classes of LV, LV myocardium (LVM), RV, LA and RA.
All 2D slices are mapped into 3D space and rigidly aligned to the WHS atlas
[40]. All experiments are conducted on a NVIDIA 3080 GPU with 12GB memory.

3D Shape Completion. We examine the effects of data augmentation via LRF
on 3D cardiac shape completion on the WHS datasets [14,21,33,39]. We train a
LRF for 1,000 epochs and it takes 0.266s to generate a 3D segmentation with
T=100 steps. A VAE [13] is trained for comparison. We also train a latent diffu-
sion model [26], which however, fails to converge with limited number of training
data. Then, we train LC-U-Nets for 600 epochs with data augmentation, which
includes 25% real data and 75% synthetic data generated online by VAE [13] or
LRF for each epoch, compared to a LC-U-Net trained without synthetic data.
For each of 48 3D segmentations in the test set, we simulate 10 different multi-
view 2D segmentations at random motion level λ, resulting in 480 test samples
for evaluation. The Dice coefficient (DSC) and 95th percentile of Hausdorff dis-
tance (HD95) are measured and reported in Table 1. The statistical significance
is examined by paired t-test. Compared to the LC-U-Net trained without data
augmentation, the LRF enhances the data diversity and reduces the geometric
errors significantly by 16.2% in terms of HD95. The higher accuracy in the 3D
shape completion task also demonstrates the superior generation quality of the
LRF compared to the VAE model.

We further investigate how the ratio of synthetic data and neural network ar-
chitectures can affect shape completion. We train LC-U-Net, TransUNet [3], and
SwinUNETR [8] for 3D cardiac shape completion with synthetic data generated
by LRF. Fig. 3 shows that the accuracy of LC-U-Net increases consistently with
more synthetic data, until it reaches the best result when 75% synthetic data are
used. LC-U-Net performs better than Transformer-based models [3,8] since it is
data efficient with inductive bias. Regardless of the network architecture, both
HD95 and DSC are improved remarkably by LRF-based data augmentation.

For qualitative results, Fig. 5-a shows a 3D shape completed by LC-U-Net
augmented by LRF. Fig. 5-c visualises 3D cardiac shapes generated by LRF.
For 3D+t shape completion, we apply LC-U-Net (LRF) to 1,000 UKB data. An
example of completed 3D+t cardiac sequence is shown in Fig. 5-b.
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3D+t Shape Generation. We train CardiacFlow on the UKB dataset with
completed 3D+t cardiac shapes for 100 epochs using σ=1.5 for PGK encoding.
CardiacFlow is compared to CHeart [25], spatio-temporal neural distance field
(ST-NDF) [31], and a vanilla LRF with one-step generation (T=1). For each
baseline method, we randomly generate 1,000 samples for evaluation. The quality
of generated 3D+t shapes is measured by the volume Fréchet inception distance
(vFID) [9], which is defined as dF = ∥µ1−µ2∥2+tr(Σ1+Σ2−2(Σ1Σ2)

1
2 ) between

generated 3D+t shapes N (µ1, Σ1) and UKB test set N (µ2, Σ2), where µ ∈
R200 is the mean cardiac four-chamber volumes for M=50 frames. The periodic
consistency is evaluated by cycle-DSC, i.e., the DSC between the start (τ=1)
and end (τ=50) frame of a cardiac cycle. The vFID and cycle-DSC are reported
in Fig. 4, which shows CardiacFlow achieves superior generation quality and
periodic consistency than all baselines. CardiacFlow enables high-quality one-
step generation, whereas vanilla LRF fails to capture accurate shape distribution
in one step. For runtime, CardiacFlow takes 1.611s to generate an entire 3D+t
sequence, which is similar to CHeart (1.467s) and ST-NDF (1.472s). An example
of 3D+t shapes generated by CardiacFlow is visualised in Fig. 5-d.

We conduct ablation studies on three components of CardiacFlow: (i) The
PGK frame encoding Kσ(τ) is substituted by a scalar conditioning variable τ .
(ii) The learnable embedding ϵx is replaced by a Gaussian noise so that the
initial value is no longer learnable. (iii) During training, the time t is sampled
uniformly instead of Beta sampling. The vFID score and cardiac four-chamber
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volumes averaged over 1,000 generated 3D+t shapes are presented in Fig. 6. It
indicates that CardiacFlow learns accurate volume distribution from the UKB
dataset. The removal of PGK encoding reduces the cycle-DSC from 0.981 to
0.959. Without learnable initial values or beta sampling, CardiacFlow fails to
capture the 3D+t shape variation or motion pattern via one-step generation.

4 Conclusion

In this work, we introduce flow matching for 3D+t shape completion and gen-
eration of four cardiac chambers. A latent rectified flow is employed to generate
3D cardiac shapes for data augmentation, leading to significant improvement
on 3D shape completion. A novel CardiacFlow framework is developed to learn
efficient 3D+t cardiac shape generation from the UK Biobank dataset. Instead
of learning implicit segmentations, in future work, we will explicitly reconstruct
3D+t meshes for cardiac four chambers. In addition, CardiacFlow could be fur-
ther extended to generate 3D+t cardiac shapes conditioned on demographic and
pathological information, as well as model spatio-temporal distribution for vari-
ous types of medical images and shapes of organs. Moreover, we plan to validate
CardiacFlow clinically on cardiac imaging datasets with diseases to generate
plausible shape models of the whole heart for shape analysis, imaging-based
biomarker discovery, and digital twin modelling.
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