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Abstract. Gastroscopic Lesion Detection (GLD) is one of the critical
tasks within computer-assisted gastroscopic diagnostics. Endoscopists
adopt a pattern-based philosophy for GLD: they identify and summarize
typical sub-category patterns with specific medical meanings and con-
duct GLD based on these patterns. However, the current gastroscopic le-
sion detectors follow the classical data-driven deep-learning-based train-
ing paradigm, which differs from the endoscopists’ diagnosis process and
leads to low interpretability, limiting their performance and potential for
daily clinical practice and patient care. The intuitive data-driven solu-
tion with sub-category pattern labels may work but it requires expensive
annotation costs. In this work, we imitate the pattern-based philosophy
with limited labels and propose a Pattern-Anchored Adaptive Proto-
type Learning (PAAPL) for Gastroscopic Lesion Detection. PAAPL con-
sists of a Prototype-based Gastroscopic Lesion Detector (PGLD) and a
Pattern-Anchored Adaptive Learning (PAAL) strategy. PGLD achieves
sub-category pattern detection based on similarity to prototypes. PAAL
proposes a vector-wise prototype formulation and an adaptive prototype
update strategy to anchor prototypes to limited-annotated patterns with
specific medical meanings and adaptively learn pattern characteristics
from unannotated data in GLD datasets. We evaluate PAAPL on the
LGLDD and Endo21 datasets, demonstrating its ability to learn and
detect sub-category patterns trained with limited annotations. By do-
ing this, PAAPL enhances detector interpretability and yields significant
performance improvement (+3.7AP on LGLDD/+5.4AP on Endo21).

Keywords: Gastroscopic Lesion Detection · Sub-category Patterns ·
Limited-annotated data

1 Introduction

Gastroscopy plays a crucial role in daily clinical practice for diagnosing a spec-
trum of gastropathy, including early cancer detection [16], gastric polyp detec-
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Fig. 1: Typical patterns for each category of Gastroscopic Lesions: Each
category of gastroscopic lesions has multiple typical sub-category patterns and
appears large intra-category morphological diversity of convexity, concavity, or
texture.

tion [1], gastric varices detection [6], etc. Gastroscopic Lesion Detection (GLD) is
a key task within this domain, which aims to locate and identify different gastro-
scopic lesions with cheaper bounding box annotations than segmentation. Com-
pared with colonoscopic lesions, gastroscopic lesions exhibit higher sub-category
diversity, particularly in terms of convexity and concavity [5, 4](see Fig. 1). The
classical data-driven deep-learning-based training paradigm adopted by the cur-
rent gastroscopic lesion detectors [10, 8, 11, 3, 15, 16, 7, 13] makes them pay less
attention to these diverse sub-category lesion patterns, which differs from endo-
scopists’ behaviors. Due to this reason, the current gastroscopic lesion detectors
may suffer from low interpretability, limiting their potential for further improve-
ment and application in daily clinical practice and patient care.

We examine how endoscopists learn to conduct GLD and discover a more
interpretable pattern-based philosophy [5, 4]: they identify and summarize typi-
cal sub-category patterns with specific medical meanings for each category (see
Fig. 1). With this knowledge, they can handle pronounced sub-category mor-
phological diversity with limited prototype examples from textbooks and refine
their diagnostic precision with more examples in clinical practice. The most in-
tuitive way to integrate such philosophy into GLD is re-annotating the current
GLD datasets with sub-category pattern labels and re-training the detectors.
However, annotating exhaustive sub-category labels (well-annotated data) is ex-
tremely expensive. Few-shot learning [9, 14, 12] could be a cheaper solution but
it may not be suitable in the GLD setting because the limited-annotated sub-
category pattern labels are not mutually exclusive with well-annotated category
labels.
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Fig. 2: Pipeline of Pattern-Anchored Adaptive Prototype Learning
(PAAPL) for GLD: PAAPL consists of a Prototype-based Gastroscopic Le-
sion Detector (PGLD) and Pattern-Anchored Adaptive Learning (PAAL) strat-
egy. (→: Training process, →: Inferring process)

In this work, we propose Pattern-Anchored Adaptive Prototype Learning
(PAAPL) for GLD that can integrate the pattern-based philosophy with limited
sub-category pattern annotations (non-mutually-exclusive to category labels).
PAAPL contains two main components: Prototype-based Gastroscopic Lesion
Detector (PGLD) to achieve prototype-based sub-category pattern detection and
Pattern-Anchored Adaptive Learning (PAAL) strategy to learn sub-category
pattern prototypes from GLD datasets with limited annotations. Specifically,
PGLD introduces a Prototype Branch following the Region Proposal Network
(RPN) for prototype-based pattern detection. This brunch employs contrastive
clustering to learn prototypes of sub-category patterns and achieves detection
based on the similarity to the pattern prototypes. The PAAL formulates proto-
types using feature vectors of both limited-annotated patterns and representative
examples in GLD datasets to anchor the prototypes with specific patterns and
learn more representative characteristics of patterns. Moreover, PAAL adaptively
updates prototypes based on different similarity threshold to preserve stable up-
dates and avoid potential forgetting of some patterns.

We evaluate the effectiveness of PAAPL on the LGLDD and Endo21 datasets.
Experimental results demonstrate that PAAPL can learn prototypes anchoring
to specific sub-category gastroscopic lesion patterns from GLD datasets with
limited annotations, which improves the detector interpretability and yields sig-
nificant improvement (LGLDD: +3.7AP/Endo21: +5.4AP).

2 Methodology

The proposed Pattern-Anchored Adaptive Prototype Learning (PAAPL) for
GLD consists of a Prototype-based Gastroscopic Lesion Detector (PGLD, Sec.2.1)
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and a Pattern-Anchored Adaptive Learning (PAAL) strategy. The PAAL adopts
a novel prototype formulation (Sec. 2.2) and update (Sec. 2.3) strategy. Fig. 2
demonstrates the pipeline of PAAPL.

2.1 Prototype-based Gastroscopic Lesion Detector

The PGLD is designed for prototype-based pattern-level detection. PGLD adopts
the classical 2-stage detector framework of Faster RCNN [10] and introduces a
novel Prototype Branch after Region Proposal Network (RPN) to achieve the
goal. In the Prototype Branch, PGLD maintains a set of prototypes denoted as
P = {p11, p12, ..., pc1, pc2, ...} to facilitate pattern-level detection, where c ∈ C
and C represents the number of categories in the datasets. The size of prototypes
in P and the formulation of prototypes can both be flexible.

Given an input gastroscopic lesion images I, PGLD first extracts positive
proposals O = {o1, o2, ...}, from the Region Proposal Network (RPN), akin to
Faster RCNN. In the following, the training and inferring process are different.

Training process (→ in Fig. 2): 1) For each oi (its feature vector denotes
as fi), PGLD assigns the ground truth to it, obtaining assigned proposals oia and
assigned label ci. 2) For each assigned proposal oia, PGLD obtains prototypes
Pc of ci, where Pc = {pij |i = ci}, computes the similarity scj = sim(fi, p) for
p ∈ Pc, and obtain similarity sets: Si = {sc1, sc2, ...}, 3) PGLD matches the most
similar prototype for p ∈ Pc, and obtain pi and matched proposal oim, which
can be expressed as: pi = {pij |j = argmax

s∈Si

sij}, where the similarity function

sim(·, ·) is: sim(x, y) = x·y
∥x∥∥y∥ .

For each matched proposal oim, PGLD sends them to Classification Brunch,
Box Regression Brunch, and Prototype Brunch to calculate the loss. The fi is
also used to update the prototype pi using some rules. We employ the InfoNCE
Loss for effective contrastive learning to Prototype Brunch Lp:

Lp = −log
exp(fi · pi/τ)∑

pij∈P exp(fi · pij/τ)
,

where τ is a temperature hyper-parameter and is set to 0.07.
Inferring process (→ in Fig. 2): 1) For each oi, PGLD computes the

scj = sim(fi, p) for p ∈ P and obtain Si = {s11, s12, ...}. 2) PGLD first matches
the most similar prototype to each positive proposal c, j = argmax

s∈Si

scj , and

obtains matched proposal oim. 3) For each oim, PGLD assigns the labels of most
similar prototypes to it (ĉi = c) and obtains assigned proposals oia. 4) PGLD
regresses the bounding box for oia and obtains detection outputs.

Though the Prototype Branch can predict labels and assign ground truth, the
classification branch remains essential for PGLD, particularly in the early stages
of training when the pattern quality may be suboptimal, as the classification
branch helps stabilize the training process.
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Fig. 3: Pipeline of Pattern-Anchored Adaptive Learning (PAAL): PAAL
formulates prototypes with both limited-annotated examples and data examples
of GLD datasets. The prototype update of PAAL can be categorized into 3
situations.

2.2 Prototype Formulation of PAAL

The PAAL requires prototypes anchoring to specific patterns and being able to
represent examples of GLD datasets.

Formulation: PAAL formulates pattern prototypes as follows: 1) PAAL
stores feature vectors of examples with pattern-level annotations (denoted as
A = {a1, a2, ...}) to anchor the pattern. The mean of the A is denoted as am. 2)
PAAL maintains a repository of up-to-N feature vectors of examples (denoted
as E = {e1, e2, ..., eN}) from the GLD dataset for each pattern, and the mean of
E is denoted as em.

Initialization: PAAL uses the A to initialize E of each pattern. N is larger
than the size of A. Once E is obtained, PAAL initializes the pattern prototype
using the mean em of this unfilled E as pi. In the learning process, it directly
fills the feature vector to E until the size of E is equal to N .

Training: Except for the contrastive learning between fi and pi in Sec. 2.1,
PAAL also computes the similarity loss between fi and corresponding ami to
anchor the prototype by anchoring the examples to obtain La, where La =
sim(fi, ami)). With La incorporated, the overall loss Ld for prototype brunch
becomes Ld = Lp + La The total Loss function can be expressed as:

L = LPRN + ϕdLd + ϕboxLbox + ϕclsLcls

where LPRN , Lbox, Lcls are the loss of RPN, box regression brunch and classi-
fication brunch, respectively. ϕd, ϕbox, ϕcls are the loss weight of Ld, Lbox, Lcls

This formulation ensures that the learned pattern prototypes anchor to spe-
cific patterns and learning the characteristics of data examples in GLD datasets.
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2.3 Prototype Update of PAAL

The prototype update of PAAL need to balance preserving update stability and
avoiding potential omitting or forgetting for some examples.

In the beginning, given a feature vector fi of a lesion, PAAL measures the
similarity sim(fi, pi) against a predefined threshold τd:

If sim(fi, pi) > τd, it indicates a high similarity to existing prototypes. PAAL
then evaluates the similarity between fi and ei ∈ E to identify the most similar
example es, where es = max

ei∈E
sim(fi, ei), Subsequently, PAAL compares fi, es

with prototype pi and identifies the less similar between them as the more unique
example eu, where eu = arg max

f∈{fi,es}
sim(f, pi),

Situation 1: eu = ei, PAAL remains the es unchanged (es = ei).
Situation 2: eu = fi, PAAL employs a momentum approach to update the
stored examples: es = m ·eu+(1−m) ·es, where m is the momentum coefficient.
Situation 3: sim(fi, pi) < τd, which indicates a limited similarity to existing
prototypes, PAAL adaptively splits the lesion as a discovered pattern from raw
pattern, generates prototype for it, but keeps the same pattern label with raw
pattern. By doing this, PAAL mitigates the risks of overlooking or forgetting
examples and reduces the instability of prototypes. Specifically, PAAL regards
fi as the prototype pd for this discovered pattern, incorporates pd into the set of
pattern prototypes P, and preserves the raw medical meaning by inheriting the
set of Ai. This discovered pattern is updated within the framework above. The
prototype update strategy can preserve stability for different initialization.

3 Experiment

Settings: Backbone: ResNet-50, Optimizer: Adam, Learning Rate: 1e-4, τd =
0.4, N = 20. Training schedules, Faster-RCNN Loss, other settings follow SSL [16].

Datasets: We evaluate the PAAPL on LGLDD [16] and Endo21 [2]. LGLDD [16]
comprises 12,292 lesion boxes, 10,083 gastroscopic images, and includes four
types of lesions: polyp (‘pol’), ulcer (‘uls’), cancer (‘can’), and sub-mucosal tu-
mor (‘stm’). Endo21 [2] Sub-task 2 contains 1473 images and contain ‘polyp’.

Sub-category Gastroscopic Lesion Pattern Annotations: Experienced
endoscopists help us to identify typical sub-category patterns from morphological
aspects. As is shown in Fig. 1, 1) cancers contain 5 typical sub-category patterns
(concave, plain concave, plain, plain convex, and convex); 2) polyps contain
2 typical sub-category patterns (plain and convex); 3) ulcers contain 3 sub-
category patterns (A stage, H stage, and S stage); and 4) smts contain 2 sub-
category patterns (plain and convex). Doctors give us at least 7 typical examples
for each pattern. Finally, we use 84 annotated examples in total for PAAPL.

Main Results: We report Quantitative (Tab. 1/Tab. 2(a)), t-SNE (Fig. 4.‘PAAL’),
and Qualitative (Fig. 5) results: 1) PAAPL can learn all the sub-category pat-
terns (Fig. 4.PAAL) and can detect challenging pattern lesions (Fig. 5). Detect-
ing these pattern lesions brings significant improvements (AP & Category-wise
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Table 1: Quantitative Results on LGLDD datasets: PAAPL can bring
significant performance enhancement (+3.7AP) compared to Faster-RCNN and
overperform other methods, especially for the most challenging label ‘can’.

Method AP AP50 AP75 pol smt uls can
CenterNet [3] 29.3 57.2 25.4 41.6 36.0 27.3 12.1

Faster RCNN [10] 34.1 70.6 28.1 44.0 44.4 24.0 24.2
DINO [15] 32.2 66.6 26.6 42.0 43.8 22.2 20.6
HSL [16] 36.4 74.0 31.4 43.7 48.0 26.1 27.6
SSL [16] 37.3 74.8 33.2 44.9 51.0 26.1 27.3

STFT [13] 36.2 74.1 31.2 45.4 53.4 23.1 22.8
ECC [7] 36.7 74.1 32.8 45.7 53.8 23.3 24.1

Faster RCNN + FSFT 33.7 (-0.4) 69.8 27.6 43.6 44.2 23.2 23.7
PGLD 36.5 (+2.4) 73.6 32.7 44.2 49.1 25.7 27.5
PAAPL 37.8 (+3.7) 75.7 33.6 45.1 50.2 26.6 29.4

Example

Prototype

Mean of Doctor-provide samples Discovered 

Pattern

PGLD PGLD+vec

PAAL w/o Adap PAAL

Fig. 4: tSNE Results of label ‘can’ for different PAAL Design.

AP) compared to Faster RCNN [10] (+3.7AP on LGLDD/+5.4AP on Endo21)
and outperform some other classical general detector like CenterNet [3] and
DINO [15] (Tab. 1 and Tab. 2(a)), 2) Category-wise AP also proves the AP
enhancement source of PAAPL is improving detecting challenging category ‘can’
and ‘uls’ (‘can’ and ‘uls’ both have more sub-category patterns, including ‘con-
cave’ sub-category patterns. ), 3) Limited Sub-category Annotations help
PAAPL outperform SSL [16], which uses large-scale unlabeled data and huge
GPU time for backbone pre-training and semi-supervised learning, 4) Compar-
ison with few-shot detectors: We train 2-stage few-shot detector [9] using
category labels as prior knowledge and sub-category annotations for few-shot
learning. Experiment results (‘Faster-RCNN+FSFT’ in Tab. 1) prove unsuit-
able usage of limited sub-category pattern annotations brings negative effects.

Comparison with Coloniscopic Polyp Detector: Compared to SOTA Colonis-
copic Polyp Detector (CPD) (ECC [7] and STSF [13]), PAAPL can outperform
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GT Faster RCNN ECC PAAPL

Fig. 5: Qualitative Result: PAAPL can detect concave pattern lesions and
achieve comparable performance to ECC [7] in detection convex lesions.

Table 2: Quantitative Results of: (a) Endo21 datasets (b) Ablation Study for
PAAL Design and Detector Interpretability on LGLDD datasets.

(a)
AP AP50 AP75

DETR 55.3 74.1 64.3
Faster RCNN 57.8 79.1 68.1

DINO 59.4 79.8 68.7
YOLO v5 60.5 81.0 66.4

SSL 61.9 83.0 69.2
PAAPL 63.2 (+5.4) 84.4 69.7

(b)
Method AP AP50 AP75
PGLD 36.5 73.6 32.7

PGLD+vec 36.8 74.1 32.8
PAAL w/o Adap 36.9 74.2 32.8

PAAL 37.4 75.1 33.1

them on mAP (Tab. 1). From category-wise AP, CPDs perform well on labels
‘pol’ and ‘smt’ but below expectations on labels ‘can’ and ‘ulc’. This is because
the typical sub-category patterns of ‘pol’ and ‘smt’ are ‘convex’ or ‘plain’, which
is quite similar to colonoscopic polys and CPD aims to improve convex-like le-
sion detection. However, PAAPL demonstrates stronger adaptability in detecting
different subcategory lesion patterns. Fig. 5 also reach similar conclusion.

Ablation Study for PAAL Design and Detector Interpretability: Exper-
iments to evaluate designs of PAAL include: 1) ‘PGLD’: w/o any sub-category
annotations, 2) ‘PGLD+vec’: PGLD + vector-wise prototype formulation (w/o
anchoring to sub-category patterns), 3) ‘PAAL w/o Adap’: PAAL (anchoring to
sub-category patterns) but w/o adaptive prototype update, and 4) ‘PAAL’. The
more discriminative pattern clusters learned by PAAL prove its performance en-
hancement sources from recognizing these patterns, improving interpretability.

According to Tab. 2(b) and t-SNE results of challenging label ‘can’ (Fig. 4),
1) vector-wise prototype can better learn and represent sub-category pattern
(‘PGLD+vec’ learns 1 more sub-category pattern and enhance 0.3AP compared
to ‘PGLD’); 2) Though anchoring prototypes can help learn all the sub-category
patterns and enhance model interpretability, adaptive prototype update strategy
can further enhance performance (‘PAAL’ enhance 0.5AP to ‘PAAL w/o Adap’).
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Conclusion: By integrating the endoscopists’ pattern-based philosophy, PAAPL
can learn to detect sub-category lesion patterns with affordable annotations, en-
hancing interpretability and overperform somemore expensive detector. More-
over, the ResNet-50 backbone ensure PAAPL can be deployed to cheaper device,
which is significant to ground the model to some hospitals in rural areas. Finally,
PAAPL demonstrates extensive potential and value of integrating valuble endo-
scopists’ experience into deep-learning model, and provides affordable solutions
to satisfy the increasing demands of detecting more sub-category lesion patterns
in clinical practice (annotating limited examples and training with PAAPL).
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