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Abstract. Assessing lymph node (LN) metastasis in CT is critical for
esophageal cancer treatment planning. While clinical criteria are com-
monly used, the diagnostic accuracy is low with sensitivities ranging
from 39.7% to 67.2% in previous studies. Deep learning would have the
potential to improve it by learning from large-scale accurately labeled
data. However, from the surgical procedure in LN dissection, patholog-
ical report only indicates the number of dissected LNs in each lymph
node station (LN-station) with the number of metastatic ones found in
the respective LN-station. So, it is difficult to establish one-to-one pair-
ing between LN instances observed in CT and their metastasis status
confirmed in the pathological report. In contrast, gold reference labels
on LN-station metastasis can be readily retrieved from pathology reports
at scale. Hence, instead of distinguishing LN instance metastasis, we di-
rectly classify LN-station metastasis using pathology-confirmed station
labels. We first segment mediastinal LN-stations automatically to serve
as input for classification. Then, to improve classification performance,
we automatically segment all visible LN instances in CT and design a
new LN prior-guided attention loss to explicitly regularize the network to
focus on regions of suspicious LNs. Furthermore, considering the varying
appearances and contexts of different LN-station, we propose a station-
aware mixture-of-experts module, where the expert is trained to special-
ize in a group of LN-stations by learning to route each LN-station group
tokens to the corresponding expert. We conduct five-fold cross-validation
on 1,153 esophageal cancer patients with CT and pathology reports (the
largest study to date), and our method significantly outperforms state-
of-the-art approaches by 2.26% in AUROC.
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Fig. 1: An illustration of the difficulty to establish the one-to-one pairing between
LN instances observed in preoperative CT and their metastatic status reported
in post-surgery pathology report. From the report, LN-station-7 is known to be
metastasis with one metastatic LN. Yet, there are six visible LNs at station-7 in
CT, and it is difficult for radiologists to identify which LN instance is positive.

1 Introduction

Esophageal cancer (EC) is the sixth leading cause of cancer death worldwide [25].
LN metastasis is one of the most important prognostic factor in EC. Accurate
preoperative identification of LN metastasis is essential to determine treatment
decisions (surgery vs. neoadjuvant) and plans (surgical resection area or clin-
ical target volume [CTV] in radiotherapy) [17]. Contrast-enhanced computed
tomography (CT) is the standard imaging tool for assessing LN metastasis be-
fore treatment. Although criteria such as RECIST [23], morphology [22] and
texture characteristics [1] are widely used in clinical practice, they often yield
under-estimated diagnostic performance [2,4,12,14,27] (e.g., sensitivity ranged
from 39.7% to 67.2% with specificity around 80.0%). Thus, there is great need
to develop an effective computer-aided diagnosis (CAD) solutions for this task.

With the success of deep learning in medical imaging CAD tasks [24, 30],
preliminary attempts have been made for its application on LN abnormality di-
agnosis [19,26]. A major limitation of previous work is that the RECIST criterion
(the short axis ≥ 10mm) is used as the LN metastasis reference label, which is
not accurate. As mentioned, the RECIST criterion has a low sensitivity (39.7%
to 67.2%) in identifying pathologically-confirmed LN metastasis, which is not
suitable to serve as the gold reference label for training. To learn from "true"
metastasis LN labels (pathologically confirmed), few works use LN dissection
results of pathology reports to generate the gold reference label of LN instances
in CT for patients with head and neck cancer [9–11]. However, as shown in Fig.
1, due to the practical surgery procedure of LN dissection in esophageal cancer,
the pathology report only indicates the number of dissected LNs in each LN-
station and the number of pathologically metastatic ones within this station.
This makes it extremely difficult and unscalable (without mentioning the time
cost) for human experts to establish the one-to-one pairing between LN instances
observed in CT and their metastatic status reported by pathological examination.
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Although individual LN metastasis status is difficult to confirm from the
pathology report, the gold reference label for LN-station metastasis can be eas-
ily recovered from the pathology report at scale, i.e., a LN-station is labeled as
metastasis if there exists at least one metastatic LNs reported at this station. Im-
portantly, LN-station metastasis is sufficient in clinical usage since LN surgical
dissection is indeed performed station-wise [7] and the GTV region in radiother-
apy [13] is delineated based on the range of LN-station instead of individual LNs.
Motivated by this observation, one can directly predict the LN-station metas-
tasis status using the pathology-confirmed LN-station label, which eliminates
the need for the labor-intensive yet ambiguous LN instance-wise label pairing
process, allowing for the use of large-scale datasets.

In this work, we tackle the task of LN-station metastasis classification of EC
patients using a large-scale dataset (> 1000 patients) with pathology-confirmed
labels. We first segment the mediastinal LN-stations (stations 1 to 8) automati-
cally using a robust DeepStationing model [5]. Then, the ROI for each LN-station
is cropped in CT and used as input for classification. Since metastasis status for
LN-station is determined by the metastasis status of LNs within it, we also
auto-detect all visible LN instances (≥ 5mm) in CT and utilize these LN priors
as attention to guide the LN-station classification, i.e., a new LN prior-guided
attention loss is introduced to explicitly regularize the network to focus on suspi-
cious LN regions. Moreover, considering that different LN-stations have distinct
appearances and contexts, we divide LN-station into multiple groups based on
their location, and propose a Station-Aware Mixture-of-Expert (SA-MoE) mod-
ule to guide each expert focusing on a specific group of LN-stations by learning
to route each LN-station group tokens to the corresponding expert. This allows
the network to learn metastasis features from different LN-stations.

The main contributions of this work are as follows:

– We address clinically essential yet under-studied task of LN-station metasta-
sis diagnosis, leveraging large-scale dataset and circumventing the challenges
to establish one-to-one LN matching between CT and pathology report.

– To solve the LN-station classification task, we propose a new LN prior-guided
attention loss and a station-aware mixture-of-experts module, allowing us to
learn effective metastasis imaging characteristics from different LN-stations.

– Using extensive five-fold cross-validation of 1153 EC patients with preop-
erative CT and postoperative pathological reports (as the largest cohort
to date), our method significantly outperforms previous state-of-the-art ap-
proaches by 2.26% absolute AUROC value on this formidable task.

2 Method

Prerequisite Prior Segmentation: An overview of the proposed framework
is illustrated in Fig. 2(a). We first generate the input ROI by segmenting the
mediastinal LN-stations (station 1 to 8 per IASLC [20] guideline) automatically
using a robust DeepStationing model [5], with an average of 81.1% Dice score and
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Fig. 2: An overview of the proposed LN-station metastasis classification method.
(a) LNS masks are utilized to crop the LNS ROI from the CT scan, while the
corresponding LN masks are not only concatenated with the image to serve as
input for the model but also provide explicit supervision, guiding the network’s
focus on the LN region. (b) We replace original FFN layers with Station-aware
MoE layers, which learns the mapping of tokens to their corresponding LN-
station groups and routes the tokens to the corresponding experts.

0.9 mm average surface distance error. To provide direct supervision of LN priors
for this task, LN instances are detected and segmented by an ensemble of recent
transformer-based LN detectors [28, 29], which has ≥ 80% average detection
recall at 4 false positives per patient on all visible LN instances (with a short
axis ≥ 5 mm). We concatenate the region of interest (ROI) of the LN-station
with its corresponding LN masks as input to the classification model.

2.1 Classification Network with LN Prior-guided Attention Loss

MobileViTv2 [16] of a hybrid design of ConvNets and transformers can achieve
improved representation ability without compromising computational efficiency.
Inspired by this design, we extend the 2D MobileViTv2 into 3D architecture
and modify the last three transformer blocks to enable global semantic grouping
and localized attention parsing. Specifically, we replace the original transformer
block’s feedforward network (FFN) layer with our proposed SA-MoE layer, which
groups adjacent stations to better accommodate subtle inter-station LN feature
variations. In addition, we introduce a LN prior-guided attention loss that ex-
plicitly regulates the network’s attention to high-risk LN regions, to facilitate
more accurate analysis of LN metastasis characteristics.

Due to anatomical complexity and subtle visual differences, a deep network
can inadvertently associate irrelevant imaging features outside the LN region
with metastasis labels and lead to degraded classification performance. We ad-
dress this challenge through an implicit multi-channel embedding and an explicit
intermediate LN location supervision. Specifically, we concatenate the CT RoI
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with a binary LN instance mask. This auxiliary mask input implicitly emphasizes
and restricts the search space of the network, improving both the efficiency and
accuracy of feature learning. We propose a mask-guided margin loss that explic-
itly encourages the network to focus solely on regions where suspicious LNs are
present. We utilize the attention score maps produced by the transformer self-
attention mechanism and enforce higher attention values within the predicted
LN mask regions. To achieve this, we extract three attention maps from the last
layer of each SA-MoE block, interpolate them to the same resolution, and aver-
age them into a single attention map (see Fig. 2 for an illustration). At last, we
use this aggregated attention map to estimate the total attention allocated to
suspicious LN regions and compare it with a predefined threshold τ . Formally,
the LN mask-guided margin loss can be written as:

Lmask = max
(
τ −

∑
(A×M) , 0

)
. (1)

where A is the aggregated multi-scale attention map, M is the LN instance
mask, and × denotes the pixel-wise multiplication. This mask-guided margin
loss can explicitly incorporate LN location priors, and meanwhile it tolerates the
minor uncertainties/errors in automatic LN segmentation.

2.2 Station-aware Mixture-of-Experts Model

Given the varying appearances and contexts among different LN-stations, utiliz-
ing LN-station class priors is beneficial for the classification. Thus, we propose
a station-aware mixture-of-experts (SA-MoE) module to learn the LN-station
specific characteristics. Depending on the location of the LN stations, we strat-
ify the LN-stations into three groups: the upper station (S1 and S2), the middle
station (S3 and S4), and the lower station (S5−S8). Based on this stratification,
we train the router in SA-MoE block, to distribute tokens to the specific expert
that corresponds to the LN-station. Given the station groups {Gi}3i=1, and the
input token x ∈ Gi, we assign the expert Ei to Gi, and use the route layer (a
linear layer) to get the logits of different experts and assign the token to the
expert corresponding to the maximum value of the logits. For training the route
layer, we calculate the cross-entropy loss between logits pi (probability of the
selection expert Ei) and token labels L(di) (target expert for token x from the
station group Gi).

LSA-MoE = −
3∑

i=1

1(L(di) = i)log(pi(x)) (2)

The final loss for the classification can be written as:

L = LBCE + λ1Lmask + λ2LSA-MoE (3)

where we empirically set λ1 = 0.5 and λ2 = 1 according to the results in the
validation set. Note that we may also choose other expert numbers, such as
two experts (S1−S4 in one group and S5−S8 in another group), or fine-grained
experts where each station is assigned to a dedicated expert. We show these
comparative results in the ablation study.
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Table 1: Quantitative LN-station metastasis classification performance. Best re-
sults are shown in bold. ATTN-Loss: LN prior-guided attention loss.
Method Params AUC S@R75 S@R80 R@S75 R@S80

ResNet-18 [6] 126.50M 83.92 78.48 72.97 78.58 72.10
ResNet-50 [6] 176.08M 83.81 75.48 71.27 75.72 70.59
MobileNetv2 [21] 10.58M 84.76 78.68 73.57 78.88 73.91
ViT-T [3] 153.36M 82.12 73.97 69.87 73.76 67.42
Swin-T [15] 105.19M 84.59 79.08 75.68 80.54 72.85
MobileViTv2 [16] 16.99M 84.77 79.18 73.97 79.03 73.76

MobileViTv2+M4oE [8] 18.43M 85.62 80.18 77.38 82.20 75.26
MobileViTv2+V-MoE [18] 17.00M 86.06 80.68 76.68 82.05 76.32

MobileViTv2+ATTN-Loss (ours) 16.99M 85.96 79.28 76.48 82.65 73.91
MobileViTv2+SA-MoE (ours) 17.00M 87.51 83.88 79.88 85.37 79.79

MobileViTv2+ATTN-Loss+SA-MoE (ours)17.00M 88.32 84.28 80.68 85.67 80.84
(+2.26%)(+3.60%)(+3.30%)(+3.47%)(+4.52%)

3 Experiments and Results

We collected a dataset consisting of 1153 patients with esophageal cancer who
underwent esophagectomy treatment at a high-volume cancer institution. Each
patient has a preoperative contrast-enhanced CT scan and a detailed patho-
logical report after surgery. LN-station labels are determined by LN dissection
results indicated in the pathology report. A LN-station is labeled as benign if
all dissected LNs at this station are benign, while labeled as metastasis if there
exists at least one metastatic LNs at this station. The median CT image size is
512× 512× 91 voxels and the median resolution is 0.795× 0.795× 5.0mm. For
evaluation, we conducted a five-fold cross-validation, split at the patient level.
Implementation Details: 3D training image patches are generated by crop-
ping 96 × 96 × 32 ROIs on the CT image and the LN mask, respectively, centered
at each LN-station. We further use each LN-station binary map to ‘mask’ the
CT image by setting voxels outside the LN-station to a constant value of −1024,
which is based on clinical guidance and serves to mask out regions outside the
lymph node stations. We adopt the same number of transformer layers as in [16].
In addition, we empirically set the threshold τ in the margin loss at 0.8 because
it produces the best validation performance. For training, AdamW optimizer
with a learning rate of 9.6e-4 and weight decay of 5e-4 is adopted. We employ
a mini-batch size of 32. The network is trained for 250 epochs for convergence,
and we select the model with the best performance on validation set for testing.
Comparison Setup: Since there is no previous LN-station classification work,
we use our preprocessing workflow and compare against six widely used clas-
sification networks, including three CNN networks: ResNet18 [6], ResNet50 [6]
and MobileNetv2 [21], two Transformer networks: ViT [3], Swin-T [15], and one
CNN+Transformer network MobileViTv2 [16]. We also compare the proposed
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Table 2: Quantitative results (in term of AUC) in LN-station subgroups. Mixing
refers to whether or not the model is trained using data of all LN-stations. First
row shows the results where three MobibleViTv2 are separately trained using
LN-station Group1, Group2 and Group3, respectively.

Methods Mixing Params Group1 Group2 Group3 Mean

MobileViTv2 × 16.99M × 3 83.97 71.28 83.03 79.43

MobileViTv2 ✓ 16.99M 84.95 72.49 83.98 80.47
+Multi-branch [31] ✓ 35.15M 86.95 71.06 86.03 81.35
+M4oE [8] ✓ 18.43M 85.72 72.73 84.71 81.05
+V-MoE [18] ✓ 17.00M 84.70 76.26 84.98 81.98
+SA-MoE ✓ 17.00M 88.24 77.99 86.79 84.34

MoE method with two popular MoE approaches: V-MoE [18] and M4oE [8]. All
methods use CT ROI + LN mask as input to the model for fair comparison.
Evaluation Metrics: Five metrics are calculated, including the area under the
receiver operating characteristic curve (AUC, or AUROC), specificity at 75%,
80% recall (S@R75, S@R80) and recall at 75%, 80% specificity (R@S75, R@S80).
Results of LN-station Classification: Table 1 outlines the quantitative com-
parisons of our method with other network backbones and the state-of-the-art
MoE approaches. Several conclusions can be drawn. First, larger model capaci-
ties may not yield the performance gain. The lightweight MobileNetv2 and Mo-
bileViTv2 achieve the overall top performance. Second, the proposed LN prior-
guided attention loss can further improve the classification accuracy to 85.96%
AUC (with an increase of 1.2%, row 9 vs. row 6). This illustrates the usefulness of
explicit LN prior guiding (via the designed loss) in the network training. Third,
incorporating the MoE module into LN-station classification noticeably improves
the performance by at least 0.86% AUC (row 7, 8, 10), with very few parameter
increases. This shows that the MoE mechanism can adaptively and effectively
learn the distinct but related features between different LN-stations. Compared
with other leading MoE methods (same backbone and same number of experts),
our explicit station-aware MoE (SA-MoE) achieves the best performance (AUC:
87.51% vs. 85.62% of M4oE [8] and 86.06% of V-MoE [18]). Last, our proposed
method (SA-MoE + LN prior attention loss) achieves the highest performance
across all metrics compared to other models, exhibiting +2.26% AUC, +4.0%
S@R80 and +4.52% R@S80 improvements when compared to the second best
performing method. Several qualitative examples are shown in Fig. 4.
Ablation results of SA-MoE: (1) Classification performance on LN-Station
subgroups (Table. 2). Training three separate networks [16] on each LN-station
subgroup produces the lowest performance (row 1); and training a single network
in all LN stations (mixed together, row 2) leads to better results (from 79.43%
to 80.47% in mean AUC). Although a multi-branch approach [31] achieves good
performance with 81.35% mean AUC, a significant increase in model parameters
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Table 3: Effect of the LN-prior guided atten-
tion loss on different backbones.

Methods AUC S@R80 R@S80

resnet18 [6] 83.92 72.97 72.10
resnet18 [6]+ATTN 86.19 76.18 75.57

ViT-T [3] 82.12 69.87 67.42
ViT-T [3]+ATTN 83.81 73.27 73.00

Table 4: Effect of the number of
experts in SA-MoE.
Experts AUC S@R80 R@S80

1 84.76 73.97 73.76

2 86.93 78.88 78.13
3 87.51 79.88 79.39
6 87.33 79.58 79.03

Fig. 3: Confusion matrix of
route module in SA-MoE.

Fig. 4: Four qualitative examples of the attention
map trained with (right) and without (middle)
LN prior-guided attention loss. Green color in-
dicates the segmented LN instances.

is required. In comparison, V-MoE [18] achieves better performance (81.98%
mean AUC) with fewer parameters. Our proposed SA-MoE achieves the best
performance in all three LN-station subgroups, surpassing the V-MoE [18] (the
second best) by 2.36% in the mean AUC. (2) Classification performance of the
routing network in SA-MoE. From the confusion matrix in Fig. 3, it is observed
that the route module in SA-MoE accurately classifies the LN-stations into their
respective groups, achieving >98% accuracy in all three groups. (3) Effect of
number of experts in SA-MoE. We perform experiments using 2, 3 and 6 experts
in SA-MoE and the results are shown in Table 4. The different numbers of experts
all lead to significant performance improvements, with +2.17% in AUC, +4.91%
in S@R80 and +4.37% in R@S80. Among them, three experts setting performs
the best. We hypothesize the reason is that it balances the general LN-station
features with station-specific features.

Ablation results of LN prior attention loss: We deploy the proposed LN
prior-guided attention loss in both CNN (Resnet18 [6]) and transformer (ViT [3])
architectures. The results are shown in Table 3. For Resnet18, we use interme-
diate feature maps and apply softmax to serve as the basis for loss calculation
with the LN mask. For ViT, we reshape the row (tied to class-tokens from the
attention map) to the shape of raw feature map and then apply softmax for the
loss calculation. Our attention loss consistently increases the classification per-
formance in both CNN (+2.27% AUC) and transformer (+1.69% AUC) models.
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4 Conclusion

This work addresses the important problem of classifying LN-station metastasis
status in esophageal cancer by taking advantage of readily available LN sta-
tion labels from large-scale pathology reports. A new LN prior-guided attention
loss is proposed to explicitly regularize the network to focus on suspicious LN re-
gions; a station-aware mixture-of-experts module is presented to effectively learn
metastasis features of different LN-stations. Extensive 5-fold cross-validation
conducted in 1,153 EC patients demonstrates the superiority of the proposed
method by improving >2.26% AUC over other leading methods on this task.
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