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Abstract. Lymph node metastasis diagnosis in computed tomography
(CT) scans is an essential yet very challenging task for esophageal can-
cer staging and treatment planning. Recent advances in deep learning
have markedly improved the performance in lymph node (LN) metas-
tasis classification. However, these methods often focus more on the
averaged features of all CT slices containing a 3D LN instance, lack-
ing effective fusion of key slice-wise features, which is important in the
LN metastasis analysis by physicians. In addition, existing deep learn-
ing models are trained using CT scans in an end-to-end fashion, thus
lacking the explicit incorporation of clinically relevant meta-imaging fea-
tures (i.e., morphological and radiomic features). Meta-imaging features
play a crucial role in LN assessment and may not be effectively cap-
tured by direct end-to-end deep learning models. To address these issues,
we formulate the 3D LN metastasis classification as a multiple instance
learning (MIL) problem by extracting and fusing slice-level features (in-
stance) into a comprehensive bag representation. Building on this, we
propose a two-streamed MIL framework with a prototype-guided aggre-
gation method that effectively captures LN characteristics at both local
and global scales. Furthermore, a multi-scale multi-source fusion module
is introduced to integrate the heterogeneous meta-imaging features with
deep learning features, enhancing the comprehensive representation of
LN. Five-fold cross-validation on a cohort of 284 esophageal cancer pa-
tients with 809 pathology-confirmed LN instances demonstrate the supe-
riority of our methods compared to the state-of-the-art approaches with
+2.66% in AUROC and +4.81% in sensitivity improvements.

Keywords: Lymph node metastasis - Multiple instance learning - Het-
erogeneous Feature Fusion.
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1 Introduction

Esophageal cancer (EC) ranks as the sixth leading cause of cancer-related deaths
globally, representing 1 out of every 20 cancer deaths [19]. Lymph node (LN)
metastasis serves as one of the critical prognostic indicators in EC. Accurate
identification of preoperative LN metastasis is crucial for guiding the treatment
decisions (whether to proceed with surgery or opt for neoadjuvant therapy) and
formulating treatment strategies (surgical resection area and radiotherapy clini-
cal target volume [CTV]) [1]. Therefore, LN metastasis assessment holds signif-
icant clinical importance in EC diagnosis and management.

Assessing LN metastatic status in CT is challenging even for experienced
physicians. It depends on various factors, such as global characteristics (e.g.,
size, shape), localized imaging characteristics (e.g., intensity inhomogeneity, tex-
tures), etc. All of these characteristics contribute to the LN status, but none
serve as a standalone predictive factor. For example, the existing criteria, such
as RECIST [16], morphology [15] and texture characteristics 2], show limited
performance in previous studies [3,5,10,12,20] (e.g., sensitivity ranged from
39.7% to 67.2% with specificity around 80.0%). Thus, proposing an effective
computer-aided diagnosis (CAD) solution for this task is highly desirable.

Previous work have used deep learning for LN abnormality diagnosis. Roth
et al. develops a two-stage convolutional neural network (CNN) network with
a 2.5D universal image decomposition representation and random aggregation
to detect and classify enlarged LNs [13, 14]. Lee et al. attempts various CNNs
architectures to diagnose cervical LN metastasis in CT using 202 patients with
thyroid cancer [9]. Kann et al. train a dual 3D network, which jointly learns
the global and local features of LNs, to classify metastatic LNs and extran-
odal extension (ENE) using CT scans of 270 patients [8]. Li et al. proposes a
semi-supervised framework to better handle unlabeled LNs, which achieves the
state-of-the-art classification performance [11]. Although these methods demon-
strate their effectiveness, they still face two major limitations. First, previous
methods focus more on the averaged features of all CT slices containing a 3D
LN instance, lacking effective fusion of key slice-wise features. For example, the
leading 2.5D method [11] simply merges multiple sets of slice features by con-
catenation, making it difficult to identify key slice information when handling
with LNs in thinner CT scan that can occupy more than 10 to 20 CT axial
slices. For metastatic LNs, its malignant characteristics are more likely to be
evident in partial slices than in all slices. Therefore, it is important to integrate
and capture the key slice features that most correlate to the metastatic status.
Second, previous deep learning-based methods also lack explicit consideration of
clinic-relevant meta-imaging features, such as long, short axis diameters, hetero-
geneity intensity, central necrosis, etc. These meta-imaging features may not be
effectively captured by the direct end-to-end deep learning model.

To address these limitations, we formulate the 3D LN metastasis classification
as a multiple instance learning (MIL) problem by extracting and combining slice-
level features (instance) into a comprehensive bag representation. Building on
this, we propose a two-streamed MIL framework with a prototype-guided aggre-
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Fig. 1: (a) Illustrates the pipeline. A LN CT patch is transposed into multiple 3-
slice images with original and zoom-in size, as the inputs for the global and local
stream, respectively. In addition, extracted morphology and radiomics features
from the LN patch are introduced as the meta feature. The prototype-guided
MIL aggregator is introduced to fuse slice features into the improved LN proto-
type, as shown in (b). The Multi-scale Multi-source Fusion Module is introduced
to enhance the meta feature by multi-scale image features, as shown in (c).

gation method that captures LN characteristics at both local and global scales.
Furthermore, a multi-scale multi-source fusion module is introduced to integrate
the heterogeneous meta-imaging features (such as morphological and radiomics
features) with deep learning features, enhancing the comprehensive represen-
tation of LN. We collected and curated 284 EC patients with 809 pathology-
confirmed LN instances. In five-fold cross-validation, our proposed method ex-
hibits superior performance, significantly exceeding the state-of-the-art LN clas-
sification approaches and other MIL-based methods and achieving the highest
AUROC score of 84.68% (+2.66% improvement) in this challenging task.

2 Method

An overview of our method is shown in Fig. 1. We develop a two-stream MIL
framework with slice-wise prototype-guided MIL aggregation module to enhance
the key LN features in both streams, as detailed in Sec. 2.1. To integrate meta-
imaging features with deep learning features, a multi-scale multi-source fusion
module is introduced that enhances meta-features by computing cross-attention
with multi-scale LN imaging features, as explained in Sec. 2.2.

2.1 Two-streamed Prototype-guided Multiple Instance Aggregation

Metastatic LN imaging characteristics may only be present in a few slices of an
LN 3D CT volume. Inspired by this observation, we naturally formulate the 3D
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LN classification problem as an MIL task by extracting and fusing slice-level
features (MIL instance) into a comprehensive bag representation for volume-
level LN metastasis classification. Our two-streamed slice-wise MIL framework
is shown in Fig. 1.

While global characteristics (e.g., size, shape) can indicate LN metastasis,
the use of localized features (e.g., texture, inhomogeneity) can facilitate more
accurate and robust LN metastasis modeling. Motivated by this, instead of ex-
tracting imaging features solely from the original CT input, we take a two-
stream approach to simultaneously encode both the original and resized input
that spatially zoomed in or out to fill the input slice, which implicitly promotes
learning localized fine-scale features. This two-stream encoding method not only
provides complementary features for subsequent multi-scale feature fusion but
acts as a mutual regularization to avoid the network overfitting to a single-scale
input. Previous methods either directly extract LN features from a pure 3D net-
work [8] or leverage a simple 2.5D strategy [11] to treat and fuse adjacent slices
equally without considering their relative importance. Here, we view LN metas-
tasis classification as a multi-instance learning problem, group the CT slices into
multiple sets of 3-channel images, and transform a 3D LN CT image with a
volume-level metastasis label in multiple 2D slice groups that can be processed
by pre-trained 2D network, acting as a bag of instances in the MIL paradigm.
During the prototype-guided aggregation, the fusion weight of each instance is
recalibrated so that the slice with more suspicious LN metastasis features can be
enhanced by assigning a higher weight to the fused feature. In implementation,
we adopt MobileNetv3 [6] with pre-trained weights on ImageNet [1] as the image
encoder to generate the two-streamed multiple slice-group features. To effectively
aggregate two-streamed slice-group features, we propose a prototype-guided MIL
Aggregator. As shown in Fig. 1, we randomly initialize two learnable prototypes:
LN-global Prototype and LN-local Prototype, denoted as Py, P; € R'*4 to guide
the aggregation of global stream and local stream features, respectively. Taking
the global stream as an example, the learnable prototype P, and the global
slice features F, € RNV*4 (N represents the number of slice groups) are fed into
the aggregator, which is implemented as a cross-attention layer. Formally, the
learnable global prototype Pj serves as the query vector (), to search for slice-
group features that are most relevant to LN metastasis, while the global-stream
slice features Fy act as both the key K, and the value V;;. The enhanced global
prototype is then updated as follows:

QKT
Pg’ = Softmax( i/&g Vy) + Py (1)

The operation for the local stream is the same as the global stream. Under
the guidance of P, and F;, the prototype-guided MIL aggregator can effectively
capture slices that are highly correlated with LN metastasis status, thereby
enabling better aggregation. The enhanced prototypes Pé,Pl’ are subsequently
used as a compact, metastasis-aware representation for final classification.
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2.2 Multi-scale Multi-source Fusion

In LN metastasis classification, clinic-relevant meta-imaging features, such as
round morphology, intensity heterogeneity, are shown to be effective. However,
these meta-imaging features may not be easily captured by direct end-to-end
trained deep learning models. Therefore, we explicitly compute these meta-
imaging features and integrate these heterogeneous features into one deep learn-
ing framework by a new multi-scale multi-source fusion module. Specifically,
we measure the long and short diameters of each 3D LN instance, calculate its
radiomic first-order features, and concatenate them as the meta-imaging fea-
ture. Then, a linear layer is used to map the meta-imaging feature to the same
dimensionality as the deep learning feature, denoting it as F,, € R*?. Next,
we leverage the multi-scale deep features to further enhance the meta-imaging
features. As shown in Fig. 1(c), this process is achieved by the cross-attention
mechanism. Specifically, enhanced local and global deep prototypes, Pé, P/, and
original slice features F}, F} are concatenated together as key K ; and value Vj, ;.
The meta-imaging feature F,, is taken as query @,,. The interaction operation

is as follows:
T

K
F = Softmax(Q\fdg’lVg,z) + Fp, (2)

After deriving the enhanced meta feature F) | along with previous P; and
P/, we simply fuse them through channel-wise concatenation. The fused repre-
sentation is then projected to a logit space for LN metastasis classification via a
learnable linear transformation and optimized using binary cross-entropy (BCE)

loss, formulated as:
T
Las = Loce (W, - [Py 1P FL] T Y) 3)

where || denotes feature concatenation along the channel dimension, W, €
R'*34 represents the trainable projection weights. Y € {0, 1} is the metastasis
status label (0: benign, 1: malignant).

3 Experiments and Results

3.1 Experimental Settings

Dataset: We collected a dataset of 284 esophageal cancer patients who un-
derwent esophagectomy treatment. Each patient has a preoperative contrast-
enhanced CT scan and a detailed post-operative pathological report indicating
whether there are metastatic LNs in the surgical dissection area. The median
CT scan size is 512 x 512 x 358 voxels with a median resolution of 0.785 x 0.785 x
1.0mm. We first detected all visible LN instances using an ensemble of recent
automatic LN detection models [21,22]. Out of these detected LNs, 809 LN in-
stances have metastasis status labels (208 positive and 601 negative), which is
confirmed by the consensus of two radiologists according to the pathology re-
port. The LN mask, along with the CT scan, is then cropped using a 64x64x 32
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ROI centered on each 3D LN. Experiments are conducted using five-fold cross-
validation with a 70%/10%/20% training, validation, and testing split (at the
patient level) for each fold.

Implementation details: A lightweight model MobileNetv3 [6] is used as the
image encoder for each of the two streams. We considered 18 slices (6 slice
groups) as the encoder’s input, which exceeds 80% LN’s slice number. The fea-
ture dimension d of the slice features and mapped meta-features is 960. For the
meta-imaging feature input, we use 20 features in total, including two morpho-
logical features (short diameter and long diameter), and 18 radiomics features
(original first-order features (skewness, elongation, etc.) calculated by Radiomics
library in Python 3.9). SGD optimizer with a learning rate of 1.6e-4 and cosine
annealing decay is adopted, and the network is trained by 300 epochs with a
mini-batch size of 32.

Comparison methods: We compare with other methods in the following cate-
gories. 1) Traditional deep learning category: four state-of-the-art LN metastasis
classification work are evaluated: two 3D-based methods of MobileNetv3 3d [0]
and 3D DualNet [8]; two 2.5D-based methods of MobileNetv3_2.5D [6] and dual-
stream 2.5D [10]. 2) MIL category: We compare to six popular MIL methods,
including Max-pooling, Mean-pooling, ABMIL [7], GAMIL [7], TransMIL [17],
and DTMIL [23]. For fair comparison, MobileNetv3 2.5D is used as the back-
bone in the MIL methods. 3) Multi-source MIL category: We also examine a
leading multi-source MIL fusion method ViLa-MIL [18], which combines both
deep learning and meta features.

Evaluation metrics: To evaluate the performance comprehensively, we com-
pute the area under the receiver operating characteristic curve (AUROC), ac-
curacy at a specificity rate of 75% (AQST75), accuracy at a recall rate of 75%
(AQRT5), recall at a specificity rate of 756% (RQS75), and specificity at a recall
rate of 75% (SQRT5).

3.2 Experimental Results

Quantitative comparison results: Table 1 summarizes the quantitative com-
parison results. Several observations can be drawn. (1) Both 2.5D and MIL
methods outperform 3D methods with an improvement of 2-5% in AUROC. This
indicates that the 3D deep network fail to learn and extract the most essential LN
characteristics in a 3D fashion. One reason for this may be the lack of pre-trained
model weights in 3D. (2) For the methods in 3D and 2.5D categories, multi-scale
approaches (DualNet [3], dual-stream [11]) achieve better performance, with an
improvement of more than 2% in AUROC as compared to the single-stream
counterpart. This confirms that the local and global features of LNs are both
important for its metastatic classification. (3) Slice-based MIL approaches yield
decreased performance ([79.89%, 80.68%] AUC) when compared to the specif-
ically designed dual-stream 2.5D LN classification method [11] (81.09% AUC).
This shows that applying previous MIL methods in single stream to the LN
classification task would not exhibit improved accuracy. In contrast, with the
proposed two-streamed prototype-guided MIL aggregation method, our method
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Table 1: Quantitative performance of LN metastasis classification. Four groups
correspond to 3D methods, 2.5D methods, MIL methods and MIL methods
combined with meta imaging features, respectively. Meta represents the meta
imaging features (morphological and radiomics features).

Method Meta AUROC AQR75 A@QS75 SQR75 R@S75

mobilenetv3 3D [6] 75.6144.34 67.99 7147 64.94 66.16
DualNet 3D [5] __ x_77.67+4.95 67.98 72.31 64.96 67.20

mobilenetv3 2.5D [6] x 78.94+2.96 68.89 72.40 66.63 66.95
dual-stream 2.5D [11] x 81.09+£3.88 72.66 73.21 71.91 69.50

X X

Max-pooling x 80.10+3.16 70.05 72.55 68.59 68.60
Mean-pooling x 80.40+3.03 71.49 72.95 70.35 67.30
ABMIL [7] x  80.34+3.92 71.80 72.24 7041 69.28
GAMIL [7] x 80.51+4.31 71.66 73.12 70.29 68.67
TransMIL [17] X 79.89+2.32 69.73 7220 68.09 66.99
DTMIL [23] x  80.68+4.54 T7T1.88 72.81 70.45 69.41
Ours 82.54+2.10 76.57 73.97 76.84 72.37

(+1.45%) (+3.91%)(+0.76%)(+4.93%)(+2.87%)

ViLa-MIL [18] v 82.02+2.90 73.18 73.47 7227 71.69
84.684-2.00 78.53 74.68 79.48 76.50
(+2.66%) (+5.35%)(+1.21%)(+7.21%)(+4.81%)

Ours

exceeds the dual-stream 2.5D method [11] (indicating that multiple slices ag-
gregation is important) and other image-based MIL methods, and achieves the
best performance of 82.54% AUC, 76.84% SQR75 and 72.37% RQST75. (4) When
further incorporating meta-imaging features, our method further boosts the AU-
ROC to 84.68% with +2.66% improvement compared to the multi-source fusion
method ViLa-MIL [18].

Qualitative results: Fig. 2 illustrates the attention weight distributions of
prototype-guided MIL aggregation module in the global and local streams (mean
values of all attention weights in the test split), showing the importance of the
positions of the slices in the classification contribution. It is observed that in
both streams, the importance of the LN slices decreases from center to periphery,
indicating that the malignant features are more likely to be near the central of a
3D LN instance. Fig. 3 presents three malignant LN examples, each showing two
different slices. The upper row presents the CT slice that has a higher attention
weight, while the lower row shows the CT slice with a low attention weight.
The examples demonstrate that our prototype-guided MIL aggregation method
is effective in identifying the most important CT slices for metastasis status.

Ablation results of incorporating meta-imaging features: We separately
demonstrate the effects of incorporating shape features and texture features in
Table 2. We can see that individually adding each of these two features both
improve the model’s performance. In contrast, shape features provide a greater
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Table 2: Effect of the different meta-
imaging features: shape and texture.

shape texture AUC  SQRT75 RQS75
82.54+2.10 76.84 72.37

Table 3: Effect of different input LN
slice numbers.

slice number AUC SQR75 RQS75

9 81.1242.78 73.51 70.67
v 83.76+2.18 77.54 74.68 18 82.54+2.10 76.84 72.37
V' |83.3843.03 76.01 74.12 27 81.77+2.60 73.63 71.89

v v |84.68+2.00 79.48 76.50

0.35

03
03 ~—03
0
a
5 0.25 —
‘g 03 0.22—0-23
c ms/
) 0.16 Q.16
So01s I
< 0.1f 012 D12
g o1 1
<
005 0,04 0.04
0
1 2 3 4 5 6
Slice group —

LN1

— —global stream - —local stream

Fig. 3: Three qualitative examples of LN
CT image with its attention weight as-
signed to the slice.

Fig.2: Attention weight distribu-
tions of the prototype-guided MIL
aggregation in two streams.

improvement, indicating that the global information (shape, size) plays a more
important role in the task. Finally, combining the shape and texture features,
our full model improves AUROC, SQR75, and RQS75 to 84.68%, 79.48%, and
76.50%, demonstrating its effectiveness.

Ablation results of different numbers of input slices: We select 9, 18,
and 27 slices of LN, respectively, to combine into slice-wise instances as input to
the prototype-guided MIL aggregation module. As shown in Table 3, we observe
that selecting 18 slices achieves the best results. Since LNs are relatively small,
18 slices can fully encompass most of LNs. Selecting 9 slices may miss metastatic
information, and selecting 27 slices leads to feature redundancy hindering the
effective fusion of key features, both leading to suboptimal performance.

4 Conclusion

In this work, we formulate the 3D LN metastasis classification as an MIL prob-
lem by extracting and combining slice-level features (instance) into a complete
bag representation. Building on this, we propose a two-streamed MIL framework
with a prototype-guided aggregation method that effectively captures LN charac-
teristics at both local and global scales. Furthermore, a multi-scale multi-source
fusion module is introduced to integrate the heterogeneous meta-imaging fea-
tures with deep learning features, enhancing the comprehensive representation
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of LN. Five-fold cross-validation on a cohort of 284 esophageal cancer patients
with 809 pathology-confirmed LN instances demonstrate the superiority of our
methods compared to the state-of-the-art approaches with +2.66% in AUROC
and +4.81% in sensitivity improvements.
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