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Abstract. Longitudinal medical records offer crucial insights into dis-
ease progression, including structural changes and dynamic evolution,
essential for clinicians in treatment planning. However, existing disease
forecasting methods are hindered by irregular data collection intervals,
negligence in inter-patient relationships, and a lack of case-reference ca-
pabilities. We introduce tHPM-LDM, a glaucoma forecasting framework
leveraging continuous-time attention within a historical condition mod-
ule to capture disease progression from irregularly acquired records. No-
tably, our approach integrates population memory, enabling personalized
forecasting through relevant population patterns. Empirical evaluations
on the SIGF glaucoma longitudinal dataset demonstrate the significant
improvements of our approach in image prediction and category consis-
tency compared to state-of-the-art methods. Furthermore, our approach
provides interpretable individual-population patterns and showcases ro-
bust performance despite missing visits.

Keywords: Longitudinal Record - Irregular-time Forecasting - Latent
Diffusion Model - Population Memory

1 Introduction

Glaucoma, an irreversible and leading cause of blindness, presents significant
diagnostic challenges due to its chronic, often asymptomatic nature, requiring
extensive long-term monitoring [13]|. Given its relatively low global prevalence
(estimated 3.54% among individuals aged 40-80 [20]), developing models for ac-
curate glaucoma forecasting from longitudinal data is essential for improving
early detection and reducing healthcare costs. However, the irregular acquisition
patterns inherent in longitudinal medical data present a substantial obstacle
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for deep learning models in capturing the dynamic nature of disease progres-
sion. While traditional methods address this by aggregating data at specific
time scales [19] or estimating missing data [23], these methods may underutilize
longitudinal data and weaken temporal dependencies.

Some methods focusing on architecture improvement [1], such as previous
glaucoma forecasting models: DeepGF [14] employs an LSTM-based method to
process fundus images for glaucoma forecasting for next visit with an indefi-
nite time span; GLIM-Net [9] introduces a transformer that integrates image
and label sequences with time intervals, enabling label predication at a given
time; MSTF [21] further extends into a multi-scale framework for improved spa-
tial dependence modeling. However, these methods primarily focus on category
forecasting and lack visual prediction capabilities.

More recently, several works have been proposed for longitudinal image fore-
casting and completion [22,26]. C2FLDM |[25], a coarse-to-fine latent diffusion
model (LDM), employs a two-stage framework for glaucoma image and category
forecasting. BrLP [16] incorporates prior knowledge and progression patterns
through Disease Course Mapping [12] in an LDM-based Alzheimer’s disease fore-
casting model, which are constrained by its reliance on accurate volumetric brain
segmentation. These methods model the temporal relationships in a simplistic
manner and ignore related disease progression pattens across the population.

In this paper, we propose a glaucoma forecasting framework called continuous-
time Historical and Population Memory-conditioned Latent Diffusion Model
(tHPM-LDM). We employ continuous-time modeling to address the challenge of
irregularly spaced historical records over time, while incorporating population
evolution to enhance personalized image and category forecasting. The main
contributions are: 1) to our best knowledge, this is the first disease forecasting
approach that integrates disease population information with image generation;
2) a multiscale continuous-time transformer is introduced to capture dynamic
evolution within the irregularly acquired records, improves visual forecasting
quality and robustness toward missing visits; 3) a retrievable memory module is
proposed for individual interaction with the disease population, mimicking how
clinicians reference similar cases during diagnosis.

2 Methods

Given a longitudinal dataset D = {RY';) = [(z4,1;,t:)]T}M_, containing T visits
from M participants, where z; € RW >3 represents the image from the i-th
visit, I; € {0,1} denotes the disease label (0 for healthy, 1 for glaucoma), and
t; € R indicates the time interval between the i-th visit and the first visit. Our
goal is to train a model to leverage the historical information from time steps
1:T—1 to forecast the participant’s future image 7 and its category Ir. To
achieve this, we propose a LDM that generates future images, conditioned on
both individual history c; and population reference c,. The generated images
are subsequently fed into a pretrained classifier for category prediction. Fig. 1
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Fig. 1. Overview of our framework. (a) depicts the training and inference processes. (b)
presents the embedding module, which generates embedding from longitudinal records.
(c) illustrates the pipeline of PMQM in generating the population condition cp. (d)
outlines the model structure of t--MSHF in extracting the historical condition cy,.

provides an overview of our approach. In the follow subsections, we introduce
each of the modules in detail.

2.1 Disease forecasting with Conditional Latent Diffusion

Our forecast framework is presented in Fig. 1(a), which contains a pre-trained
auto-encoder (£-D) for image z7 and latent feature fr translation, and a diffu-
sion model for future latent prediction. In the training stage, the latent feature
fr is decomposed into noisy status {zl}é‘ with L-steps diffusion as:

l
2] = \/d_lZO + v1 — e, with € N./\/(O,I), o = Hal, ar=1-75, (1)
=1

where 29 = fr,l € [1, L], and {3;}¥ is the linear noise schedule. During inference,
the latent feature fr is restored from noise z; with a denoising process:

1—ay-
(zz - 69(z1,l,0)> + o1€ with o = 4/ #Blv (2)
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where the estimator ey(z;,1, C) predicts the noise ¢; at each I-step under condi-
tions C' = {cp, ¢p}. Here, ¢;, is the historical feature and ¢, is associated popula-
tion condition, and all combined into intermediate layers of €y via cross-attention.
We also uses latent alignment by concatenating fr_; with z; for better anatom-
ical structure [11]. The loss function of the diffusion model is shown as:

£noise = ES(IT),ENN(OJ),INM(O,L) [”6 - 69(2’[, l? C)”%] (3>

2.2 Conditional modules

Two modules, namely t-MSHF and PMQM, are proposed to generate historical
and population conditions, respectively, as shown in Fig. 1(d) and (¢). A sequence
embedding module Seq Embd is utilized to produce image embeddings zemp €
RTXNxdm and label embeddings lem, € RT*% from the images and labels of
all visits with the process depicted in Fig. 1(b). Here, N represents the patch
number and d,, denotes the embedding dimension. These embeddings serve as
inputs for --MSHF and are used to learn the memory in PMQM. Notably, to
prevent future information leakage, the last visit embeddings of Zemp and lemp
are replaced with learnable tokens for t--MSHF.

Continuous-time Multi-scale Historical Feature Module (t-MSHF).
Our t-MSHF consists of ¢-Transformers with continuous-time attention module
(t-MHA) at different scales, which captures multiscale dynamic information from
individual historical records. Inspired by [4], --MHA uses continuous functions
in modeling the attention of dynamic evolution based on discrete observations.
More precisely, the input embeddings at all visit times are first copied to observed
sequences [Q;]7, [K;]T and [V;]T. The query ¢(t) is an interpolation function (e.g.
bilinear interpolation) with observed point ¢(¢;) = @Q;. And the continuous key
and value are sets of functions {k;(¢)} and {v;(¢)} based on each observation i.
Neural networks fp, and fg, estimate the dynamics of key and value, where the
changes of {k;(t)} and {v;(¢t)} described as linear ODEs [3] as follow:

W S hi0,0, k) =K = py )0, wl) =i (@
Observed @;, K; at time t; are initial conditions of ODEs, and we solve these
ODEs by Runge-Kutta-4 algorithm. For any visit time ¢, the i-th continuous
correlation of query and key functions is defined as the scaled inner product
of q(t) and k;(t), ie. o;(t) == ([, q(r) ki(r)Tdr)/(t — t;) and a;(t;) = q(t;) -
k; (ti)T for each t; to ensure continuity. The expected value function based on i-

th observation is v;(t) = ( ftt_ vi(7)dT)/(t—1t;). We approximate these integrations
by Gauss-Legendre Quadrature. Therefore, the output function is computed as:

T
O(t) =Y softmax(a (1) /) - (1 (5)

where dj, is the dimension of inputs. Discrete output sequence [0;]L; is com-
puted based on Eq. 5 according to time [t;]7, which will be used for next layers.
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Our t-Transformer, equipped the t-MHA, will handle label embeddings in
the Transformer encoder and process image embeddings with its decoder. Ad-
ditionally, the t-Transformer will be applied iteratively in a multi-stage manner
with a scale translation layer to enable multi-scale learning. The final historical
condition ¢;, € R4 is obtained by the average of different scales.

Population Memory Query Module (PMQ@M). In practice, clinicians
will evaluate the patient’s current status by considering both individual med-
ical histories and the knowledge of disease progression from other cases. Mo-
tivated by this practice, we propose PMQM, which initializes a population
memory M, € RFXdm to capture evolution patterns of P clusters of repre-
sentative patients. Following the SwAV [2], we apply online contrastive learning
with swapping strategy to update the memory from the disease population. As
shown in Fig.1(c), one image embedding Zepp, is first divided into two sub-
embeddings randomly, resulting in z! ,, 22, € RT*N/2xdm and further pro-
jected to sq,s55 € R'¥4m. The loss function to update the memory is shown
as:

1
Lassign(s1, 52) = 3 > (q1logps + g2logpy), (6)

where p, =softmax(s] - M) represents the predicted assign probability, and g, is

the optimal assign probability computed by the Sinkhorn-Knopp algorithm [5].
By minimizing the loss over the training samples, the memory M, learns to
represent the training participants into P clusters with centers stored in the
memory. Moreover, we can build an offline cache using predicted assignment p
that stores the probability of the patient from each cluster, providing a retriev-
able strategy to determine the top-k relevant clusters and their corresponding
participants in certain patient forecasting. Finally, the condition ¢, is obtained
by the cross attention of historical condition ¢;, (Query) and the learned memory
M, (Key, Value) by the following equation:

¢p = softmax ((Qh . K;)/\/a) Vy (7)

2.3 Learning conditional LDM and Memory all-in-once.

After pre-training the autoencoder (£-D) and classifier P, our methods can learn
the LDM with condition modules all-in-once. We first perform W = 1500 iter-
ations of warm-up training on the noise estimator ¢y and ¢t-MSHF with loss in
Eq. 3 to prevent the random query for PMQM. After that, joint training is
conducted using the total loss:

Ctotal = »Cnoise + )\mﬁassignv (8)

where A, is the balanced hyper-parameter, empirically setting to 0.1.
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Ground Truth SimVP[7] SwinLSTM[18] VTGAN[10] C2FLDM]|25] Ours

Casel
(Positive)

Case2
(Negative)

Fig. 2. Two image prediction cases using different methods.

3 Experiments

3.1 Setup Details

Dataset. We conducted experiments on the glaucoma longitudinal dataset
named SIGF [14]. Following the conventional process |9], we resize fundus images
to 256 x 256, compute the time interval in years, and collect T'=6 consecutive
visits as one clip, resulting 1146 training, 16 validation and 351 testing clips.

Settings. The autoencoder (£-D) is a U-Net structure [17] with latent di-
mension 32 X 32 x 4 and pre-trained on two external glaucoma dataset named
LAG [15] and ACRIMA [6]. The classifier P is a ResNet50 with two hidden
layers and a binary head per-trained on SIGF training set, LAG and ACRIMA.
The embedding dimension d,, is 128. More details can refer to our code’.

Metrics and Baseline Methods. We take 6th image in test clip as ground
truth and evaluate the visual quality and category consistency of all methods.
For future image generation, we use PSNE, SSIM and MSE to measure image
quality, along with semantic similarity metrics such as FID [8] and LPIPS [24].
For category forecasting, we report the performance of pre-trained classifier us-
ing accuracy, sensitivity, specificity, and AUC. Cohen’s Kappa (Kappa) is uti-
lized to compare the forecasting consistency between ground truth and gener-
ative results. We compare our approach with four baseline methods: two video
models for future image generation from image sequence (CNN-based SimVP [7]
and Transformer-LSTM based SwinLSTM [18]); one GAN-based image-to-image
translation method VIGAN [10]; and one LDM-based sequence-to-image method
C2FLDM |[25]. All methods are trained using their recommended settings with
identical batch sizes for a maximum of 700 epochs until convergence. Quantita-
tive results are reported as the mean and std over five runs.

3.2 Experimental Results

Results on image prediction. Qualitative and quantitative results are
shown in Fig. 2 and Table 1, respectively. Two cases generated by different

" The implementation is available at https://github.com/yhf42/tHPM-LDM
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Table 1. Quantitative results of different methods for image prediction.

Model PSNR 1 SSIM 1 MSE 10*) || FID | LPIPS |
SimVP [7] 19.0240.02 0.70+0.00 11.64+0.09 | 298.75+0.75 0.50+0.00
SwinLSTM [18] 19.01+0.04 0.67+0.00 11.35+0.06 | 300.23+0.86 0.51+0.00
VTGAN [10]  18.42+0.01 0.65+0.00 13.67+0.03 |189.33+1.15 0.47+0.00
C2FLDM [25] 18.32+0.06 0.65+0.00 13.91+0.16 | 210.67+0.71 0.50+0.00
Ours 19.30+0.03 0.71£0.00 10.40-+0.05 [141.19+1.32 0.44-:0.00

Table 2. Quantitative results of different methods for category forecasting.

Model ‘Accuracy(%) Specificity (%) Sensitivity(%) AUC(%) ‘ Kappa 1
Ground Truth ‘ 77.09+1.48  77.31+1.79 72.50+5.00  83.03+0.35 -

SimVP [7] 29.12+1.25  26.03+1.31 93.75+0.00  59.48+1.57 | 0.14+0.02
SwinLSTM [18]| 12.65+0.39 9.2540.46 83.754+3.06  42.60-+1.28 [-0.01+0.01
VTGAN [10] 70.14+1.32  70.39+1.15 61.00+6.09  74.07+1.99 | 0.35+0.02
C2FLDM [25] | 49.86+0.51  47.70+0.40  95.00+4.68 75.22-+0.82|0.2940.02
Ours 74.02+1.16  T74.27+1.02 68.75+5.59 82.06+1.23|10.45+0.02

methods are displayed in Fig. 2, where Cases 1 has positive findings in real diag-
nosis while Cases 2 is negative. Compared to the ground truth images shown in
the leftmost column, our predicted images demonstrate the best semantic simi-
larity and clearer OC/OD and vessel structures among other methods. Although
SimVP and SwimLSTM utilize historical images for image prediction, their re-
sults fail to show a clear fundus structure. VITGAN and C2FLDM generates
images with better semantic information, but unstable contrast and structural
variation poses challenges in identifying glaucoma. Table 1 demonstrates the su-
perior performance of our model in both image quality and semantic consistency.
Notably, while SimVP and SwinLLSTM show relatively better PSNR, SSIM, and
MSE since the low clarity may reduce prediction errors, their blurry structure
leads to semantic dissimilarity, such as higher FID and LPIPS, making them
inadequate for further analysis.

Results on category forecasting. Table 2 first summarizes the perfor-
mance of pre-trained classifier P on test set ground truth images, which regard
as the upper bound of the category forecast. Compared to other generative meth-
ods, our approach achieves a more balanced performance in glaucoma forecasting
and has the highest consistency with the prediction on ground truth. The pre-
dicted images from SimVP and SwinLSTM confused the classifier’s judgment
due to the lack of fine-grain structure. VI'GAN’s results lead to a higher false-
negative rate since the higher brightness increases the area of the optic cup. And
the classifier tends to predict C2FLDM’s results as positive due to their blurred
optic disc boundaries.
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Table 3. Results of Ablation Study. LA: Latent Alignment Strategy, MS: Multi-Scale
Translation, tM: t-MHA, QM: Population Memory Query Module.

LA MS tM QM| PSNR1 SSIM 1 MSE (10%) || FID|  LPIPS | |Kappa 1

v 18.16+0.10 0.71+0.00 14.78+0.31 | 176.30+2.19 0.48+0.00 | 0.35-+0.02

v v 18.44+0.06 0.71+0.00 14.26+0.22 | 155.09+1.22 0.46+0.00 | 0.44+0.02

v v / 18.81+0.10 0.72+0.00 12.17+0.29 | 149.32+1.10 0.45+0.00 |0.45-+0.01

v v Vv / |19.30+0.03 0.71+0.00 10.40+40.05(141.19+1.32 0.44+0.00| 0.45-+0.02
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Fig. 3. (a) Memory retrieval results for forecasting of one glaucoma patient. (b) The
ablation study of the memory length P in PMQM. (c) The relative changes (%) of
PSNR under different number of missing visit.

3.3 Ablation Study

Our ablation study results are shown in Table 3. Latent alignment preserves basic
anatomical structures, serving as a default setting. Multi-scale translation en-
hances performance by capturing spatial features at different scales, and t-MHA
enables the LDM to better capture the dynamic progression within records.
PMQM results in the best image quality by leveraging population patterns for
individual prediction, though mirroring real diagnosis that considering popula-
tion trends may influence the judgment. Figure 3(b) illustrates the influence of
memory length P in PMQM, where P = 70 achieves the best result.

Population Memory Retrieve. Another benefit of our proposed popu-
lation memory is that its ability to retrieve the high relevant cases. This en-
ables our method with stronger interpretability in patient-level disease progres-
sion forecasting. Fig.3 (a) displays one example of the memory retrieval, which
demonstrates that our method can successfully query groups of participants with
similar structural characteristics and evolutionary trajectories.

Random Missing Visit Analysis. To evaluate the performance of sequence-
based models under varying levels of missing visits, we randomly mask out dif-
ferent numbers of visits (2nd to 4th) to simulate records missing scenario. Fig.
3(c) shows the relative changes in PSNR of SimVP, SwinLSTM, C2FLDM and
our method under different levels of missing visits. The results demonstrate
that conditional LDM-based methods (C2FLDM and ours) achieve better pre-
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diction performance with missing data. Furthermore, our model exhibits better
robustness toward missing visits thanks to the t--MHA’s capacity in modeling
the irregular series and the sematic reference in population memory.

4 Conclusion

In this paper, we propose a conditional latent diffusion-based glaucoma forecast-
ing framework. Specifically, we design t-MSHF, which incorporates continuous-
time attention into multi-scale transformers to better capture the spatiotemporal
dynamics of irregularly acquired records. We further enable population-assisted
forecasting by querying individual-related features in PMQM. These conditions
are jointly learned with the LDM to improve glaucoma image and category
forecasting. Furthermore, our method enables the retrieval of participants with
similar progression patterns to a given individual. This individual-population
interaction does not rely on expertise in a specific disease and has potential for
analyzing other diseases with longitudinal follow-up.
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