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Abstract. Fairness in medical imaging ML models is dependent on en-
suring they are not impacted by sensitive attributes such as such as
race and gender. Building on popularly considered in-processing fairness
mitigation strategies, we present a novel approach to leveraging mu-
tual information (MI) regularization to learn fairness-aware deep imag-
ing representations. Based on analytical and theoretical justification, we
develop a unique gradient-based mutual information penalty which by-
passes the need for MI estimation within our Fairness-aware MI (FaMI)
framework which avoids unstable approximations and scales effectively
to large datasets. FaMI was implemented in conjunction with popular
DenseNet and Vision Transformer architectures and evaluated against
nine alternative fairness-aware alternatives as well as alternative MI es-
timators. Experiments on multi-institutional retinal OCT and rectal can-
cer MRI cohorts demonstrate that FaMI-ViT achieves the highest over-
all classification AUC (0.83 in distinguishing glaucoma vs non-glaucoma,
0.81 in distinguishing responders vs non-responders) while also improv-
ing fairness-related metrics across disparity subgroups, increasing EOM
up to 0.84 and reducing EOdd by up to 0.85. These results highlight
the potential of fairness-aware MI constraints in developing robust and
equitable imaging-based ML models.
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1 Introduction

Attributes such as demographics or ethnicity are known to be embedded in med-
ical imaging data, and can pose significant challenges in ensuring machine learn-
ing (ML) model fairness, leading to biased predictions that compromise both
the reliability and equity of ML models [1]. In clinical applications, such biases
can have profound ethical implications, undermining the trustworthiness of deep
learning (DL) models [2]. These sensitive attributes are known to be present in
multiple modalities, including MRI [3] and OCT [4], resulting in challenges for
achieving unbiased algorithmic performance across subgroups [5].

2 Previous Work and Novel Contributions

Addressing fairness challenges in medical imaging can broadly be categorized
[5] into either fairness evaluation or unfairness mitigation strategies. Fairness
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evaluation involves post hoc identification of subgroup disparities using metrics
such as demographic parity and equalized odds, providing insights into the extent
and nature of biases [5].

Unfairness mitigation aims to reduce bias using three main strategies: pre-
processing, in-processing, and post-processing [5]. Pre-processing modifies data
to balance subgroups or remove sensitive information [6,7], while post-processing
adjusts model outputs, such as through threshold calibration [8]. In-processing,
the most effective approach, integrates fairness constraints into training to learn
subgroup-invariant representations without sacrificing performance [5,9]. Recent
methods include adversarial learning [10], disentanglement [11], and contrastive
learning [12], though they can introduce architectural complexity or training
instability.

A popularly used fairness constraint is Mutual Information (MI), which is
used to quantify and minimize the dependence between ML representations and
sensitive attributes [13]. However, the most significant challenge with calculating
MI in this context is that it requires knowledge of the underlying data distri-
bution, which may be typically unknown with real-world imaging data [13, 14].
While deep learning has enabled the estimation of MI using variational bounds
or neural estimators, these methods often rely on approximations that can be
noisy and unstable, particularly in high-dimensional settings [15].

We propose a novel MI gradient penalty that avoids estimation, enhanc-
ing stability and enabling fairness-aware imaging without variational bounds
or adversarial branches. Our Fairness-aware Mutual Information Regularization
(FaMI) framework was implemented in two DL models—DenseNet [16] and Vi-
sion Transformer [17]—and evaluated on two clinical tasks (n ≈ 3500): (i) classi-
fying glaucoma vs. non-glaucoma from 3D OCT, focusing on racial disparities [4];
and (ii) predicting response to neoadjuvant therapy in rectal cancer from pre-
treatment MRI, focusing on sex disparities.

3 Methodology

As illustrated in Fig. 1, consider a dataset with N data samples, each represented
as a triplet in the form {(x, u, y)}, where the input x ∈ X , u ∈ U is the sensitive
attribute, and y ∈ Y is the target label. The model fθ : X → Y, parameterized
by learnable parameters θ, is trained to predict the target label y, while we
aim to improve its fairness by mitigating bias. The model produces a predicted
output given by v(θ) = fθ(x). The goal is to ensure that no information about
u is used to predict y; in other words, we aim for:

Definition 1 (Fair Prediction Rule [18]). A prediction v is fair with respect
to the sensitive attribute u if and only if u ⊥ v, meaning u is independent of the
learned representation v.

To achieve this independence, we incorporate a penalty term into the model
loss function that minimizes the mutual information (MI) between u and v.
Reducing MI—ideally to zero—promotes independence between the sensitive
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attribute and the learned representation. This objective function can be defined
as:

L(θ) = LCE(θ) + µLMI(θ) = LCE(θ) + µ I
(
u;v(θ)

)
(1)

where LCE(θ) is the cross-entropy loss, µ ≥ 0 is a regularization parameter, and
LMI(θ) is the mutual-information penalty term. Here, calculating MI directly is
notoriously challenging, as it depends on knowing the underlying data distribu-
tions [19]. Instead, Equation (1) can be minimized by descending its stochastic
gradient. The gradient of LCE(θ) can be computed by standard backpropagation,
whereas LMI(θ) will utilize the chain rule:

∇θLMI(θ) = JT
v ×∇vI(u;v) Jv = ∇θv(θ) (2)

where Jv is the Jacobian of v with respect to θ, which can be obtained via
automatic differentiation. By the Mutual Information Difference theorem [20],

∇vI(u;v) = E
{
λ(u,v)

}
, λ(u,v) = ∇v ln p(u|v) (3)

where λ(u,v) is called score function difference (SFD). The SFD serves as a
critical gradient for mutual information minimization, facilitating model training
by adjusting v to achieve independence from u while preserving task accuracy
[20]. Theorem 1 demonstrates that even though backpropagation is not used on
the MI term directly, it will still converge under a suitable learning-rate schedule.

Theorem 1. If the Jacobian of model predictions is bounded, i.e., ∥Jv∥ ≤ M ,
and the cross-entropy loss converges during backpropagation, then the sequence

{θk} in θk+1 = θk − η
(
∇θLCE(θk) + µ∇θLMI(θk)

)
converges to a stationary

point of L(θ). Convergence is ensured if the learning rate η satisfies η ≥ 1
µM2 .

Proof. At each iteration k, let vk denote the model representation and define
the intermediate update vk+1 = vk +hk, where hk is chosen to reduce I(u;vk),
minimizing dependency on sensitive attributes. A schematic of this concept is
shown in Fig. 1 (left panel). Setting hk = −λ(u,vk), we have:

I(u;vk+1)− I(u;vk) ≤ −E
∥∥λ(u,vk)

∥∥2. (4)

Thus, {I(u;vk)} is monotonically decreasing.

Summing (4) gives E
{∑∞

k=0 ∥hk∥2
}

≤ I(u;v0). Since I(u;v∞) = 0, it follows

that hk → 0, vk+1 → vk, and {θk} converges. Given ∇vLMI(θk) = vk+1 − vk,
we obtain ∇θLMI(θk) → 0. Furthermore:

∥∇vLMI(θk)∥ = ∥vk+1 − vk∥ ≤ M ∥θk+1 − θk∥
≤ ηM ∥∇θLCE(θk)∥+ ηµM ∥∇θLMI(θk)∥
≤ ηµM2 ∥∇vLMI(θk)∥

(5)

which completes the proof.
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Algorithm 1 FaMI Optimization

Input: {(xi, ui, yi)}N
i=1, µ, η ▷ (dataset with N samples)

Initialization: θ0 ▷ (parameters)
for k = 0, 1, 2, · · · (until convergence) do

Sample a mini-batch b ⊂ {1, · · · , N}
for i ∈ b do

vi = fθk (xi) ▷ (model output)

pi = softmax(vi) ▷ (model prediction)
λ(ui,vi) ▷ (estimate SFD)

end for
∇θLCE = 1

|b|
∑

i ∇θCE(yi,pi) ▷ (cross-entropy gradient)

∇θvi = Jvi
▷ (Jacobian)

∇θLMI = 1
|b|

∑
i J

T
vi

λ(ui,vi) ▷ (MI gradient)

θk+1 = θk − η(∇θLCE + µ∇θLMI) ▷ (parameters update)
end for

Output: θ

Fig. 1. Illustration of the proposed FaMI optimization framework. Left panel is the
Venn diagram illustrating gradual modification of model outputs to minimize MI with
respect to the sensitive attribute (k = 1 to k = k∗).

This sequence can be solved in a minibatch setting with stochastic gradient
descent via Algorithm 1, to ensure v(θ) is independent of u.
SFD Estimation: The gradient of the conditional probability can be esti-
mated directly through polynomial kernel estimation [20, 21], eliminating the
need for precise knowledge of the underlying probability density function. Un-
like approaches that approximate the joint probability or employ empirical Bayes
smoothing and density estimation [13,22], this method leverages polynomial ker-
nels to provide a robust and efficient framework for score function estimation.

4 Experimental Design

4.1 Data Description

For all experiments, cohorts segregated into train (70% per class) and test sets,
ensuring the class distribution was preserved (see Table 1).

Table 1. Multi-institutional cohorts with distribution of sensitive attributes. Class and
sensitive attribute (e.g., race and gender) counts are reported independently and may
overlap within each cohort.

Split
C1 (Eye Diseases, OCT) C2 (Rectal Cancer, MRI)

Classes Race Classes Gender

Glaucoma Non-glaucoma Asian Black White pCR Non-pCR Male Female

Train 1083 1017 700 700 700 20 110 95 35
Test 665 535 400 400 400 11 45 34 22
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C1 (Eye Diseases, OCT) comprises a publicly available cohort of 3,300 retinal
nerve fiber layer thickness maps and 3D OCT B-scan images. This dataset, cu-
rated for fairness learning, included balanced racial groups (Asian, Black, or
White) as the sensitive attribute, with glaucoma and non-glaucoma as the out-
come classes. For further details, see [4].
C2 (Rectal Cancer, pre-CRT MRI) comprised 186 pre-treatment T2wMRIs from
rectal cancer patients, retrospectively collected from four institutions prior to
neoadjuvant therapy and surgery. The objective was to predict pathologic com-
plete response (pCR) to therapy, defined as histopathologic tumor regression
grade (TRG) 0 (ypTRG0 or 0% viable tumor cells) [23]. Sex (male or female) was
designated as the sensitive attribute. Prior to analysis, MRI scans were resam-
pled to an isotropic voxel resolution of 1×1×1mm using trilinear interpolation.
Rectal tumors on each scan were manually annotated by expert radiologists, en-
suring precise delineation of relevant structures. Bounding boxes were generated
around the annotated regions using connected component analysis, excluding re-
gions smaller than 20 pixels to avoid artifacts and irrelevant components. These
bounding boxes were standardized to dimensions of 79×79×40 voxels, reflecting
the mean bounding box size across cohorts and was used in all experiments.

4.2 Model Implementation

Execution: To evaluate the impact of fairness regularization, two FaMI variants
were developed using the loss function defined in (1), where the MI penalty term
was weighted by µ = 0.5 (selected based on prior work and further validated in
the current study):
• FaMI-DN: Based on DenseNet-121, leveraging densely connected convolu-
tional layers to enhance feature propagation, encourage parameter efficiency, and
reduce redundancy. Transition layers were included for downsampling, followed
by global average pooling, and a softmax layer for classification.
• FaMI-ViT: The Vision Transformer architecture splits images into patches,
which are processed by transformer layers employing multi-head self-attention
and positional encoding. A classification token was added and passed through a
fully connected output layer to complete the architecture.
• Baselines: Non-fairness aware DenseNet-121 (DN) and ViT were included.
• Fairness-aware Alternatives: The following state-of-the-art fairness-aware
approaches were considered: FIN [4] which normalizes logits per identity group to
balance feature importance, FairBatch [24] which dynamically adjusts minibatch
compositions to enforce fairness constraints during training, and FairViT [25]
which modifies ViT with adaptive masking and distance loss to ensure equitable
attention. FIN and FairBatch were used in conjunction with either model, while
FairViT is a ViT-specific variant.
• Fairness-aware MI-Based Alternatives: To evaluate the advantages of
our MI estimation approach, we implemented two alternative methods: Mu-
tual Information Neural Estimator (MINE) [15], which estimates mutual infor-
mation through gradient descent, and Mutual Information Gradient Estimator
(MIGE) [13], which directly estimates MI gradients. Both MINE and MIGE are
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general approaches applicable to any architecture. We adapted them for fairness
optimization in DN (MIGE-DN, MINE-DN) and ViT (MIGE-ViT, MINE-ViT).

In total 11 models were evaluated using the same train and test cohorts (Ta-
ble 1). All models were implemented in 3D, with parameters optimized using a
ten-fold cross-test strategy on the training cohort using 150 epochs with a batch
size of 64, a learning rate of 1e − 4, a cross-entropy loss function, and an SGD
optimizer with a weight decay of 1e − 2. Gradient clipping with a maximum
norm of 1.0 was applied to stabilize training and prevent exploding gradients.
While SFD estimation may be dependent on batch size and embedding dimen-
sion [21, 26], stable performance was observed in our experiments. All models
were implemented in Python 3.9.18 and executed on a high-performance desk-
top computer featuring an Intel(R) Core(TM) i5-8279U CPU (2.40 GHz), 16 GB
RAM, 64-bit Windows 11 Pro (version 23H2), and an NVIDIA GeForce RTX
3080 GPU with 10 GB GDDR6X memory.

4.3 Model Evaluation and Statistical Analysis

The performance of all eleven models (DN, ViT, FairBatch, FIN, FairViT,
MINE-DN, MINE-ViT, MIGE-DN, MIGE-ViT, FaMI-DN, and FaMI-ViT) was
evaluated on both the train and holdout test cohorts. Metrics included (i) area
under the ROC curve (AUC) to measure overall classification performance, (ii)
Equality of Opportunity across Multiple Subclasses (EOM) as a fairness met-
ric assessing the balance of true positive rates across subgroups [27], and (iii)
Equalized Odds (EOdd) which evaluates disparities in both true positive and
false positive rates across sensitive subgroups [5]. Pairwise Wilcoxon testing,
corrected using the Bonferroni method (p = 0.005), was utilized to determine
significant differences in model performance between approaches. To compare
the effectiveness of our MI gradient computation against alternative approaches,
loss curves were plotted for MI-based models with fluctuations quantified using
Total Variation (TV) [28] and Root Mean Square Error (RMSE) [29], providing
a numerical measure of stability and smoothness in the optimization process.

5 Results and Discussion

5.1 FaMI-based DL models compared to fairness-aware alternatives

Fig. 2 presents the classification AUCs for five fairness-aware models based on
the vision transformer architecture: ViT, FairBatch-ViT, FIN-ViT, FairViT, and
FaMI-ViT. Across both C1 and C2, FaMI-ViT can be seen to consistently achieve
the highest overall AUC, with statistically significant improvements over other
models (p < 0.005). FaMI-ViT exhibits significantly higher EOM and lower
EOdd compared to FairBatch-ViT and FairViT, demonstrating its superior abil-
ity to mitigate fairness disparities while maintaining high classification perfor-
mance. Overall, FaMI-ViT reduces EOdd by over 0.6 compared to alternative
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(a) C1 (Eye Diseases, OCT)

0.6 0.65 0.7 0.75 0.8 0.85

ViT

FairBatch-ViT

FIN-ViT

FairViT

FaMI-ViT ∗∗

AUC↑
0.7 0.75 0.8 0.85

∗

EOM↑
1 1.2 1.4 1.6

∗

EOdd↓

(b) C2 (Rectal Cancer, pre-CRT MRI)

Asian Black White Train Test

Male Female Train Test

Fig. 2. Forest and bar plots of AUC, EOM, and EOdd for ViT models when evaluated
on (a) C1 and (b) C2 datasets. In each plot, the left panel presents the forest plot of
AUC results (subgroups in different colors), while the right panel displays the overall
AUC, EOM, and EOdd as bar plots. Results are presented for both train and test
sets. Arrows next to the metrics indicate whether a higher or lower value is considered
better. Statistical significance (* p < 0.005) is indicated for comparisons of FaMI-ViT
against alternative classifiers using pairwise Wilcoxon testing.

ViT-based fairness models and 0.5 versus the baseline ViT model, suggesting it
can effectively minimize error rate disparities across groups.

Table 2 summarizes the overall performance of FaMI-DN compared to alter-
native DenseNet-based methods. FaMI-DN can be seen to achieve the highest
AUC among DN-based models (0.83 in C1, 0.82 in C2), in addition to signif-
icantly improving fairness metrics of EOM and EOdd. Results for FaMI-ViT
have been included in Table 2 to highlight differences compared to FaMI-DN
(but which were not statistically significant).

5.2 Comparison of FaMI to alternative fairness-aware MI estimators

Fig. 3 depicts a line plot of the MI penalty term loss during training for each of
FaMI, MIGE, and MINE within C1 and C2, when using the DN model. FaMI can
be seen to achieve a more stable and smooth convergence, as well as consistently
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C1 (Eye Disease, OCT) C2 (Rectal Cancer, pre-CRT MRI)

Fig. 3. Line plots visualizing smoother convergence of MI penalty term loss for FaMI-
DN (blue) compared to MIGE-DN (green), and MINE-DN (red) across C1 and C2.

Table 2. AUC, EOM, and EOdd performance in distinguishing between patient group-
ings in each of C1 and C2, with the best model in bold. * indicates p < 0.005 in pairwise
Wilcoxon ranksum testing between the best FaMI model and the closest alternative.

Approach
C1 (Eye Diseases, OCT) C2 (Rectal Cancer, MRI)

Train Test Train Test
AUC EOM EOdd AUC EOM EOdd AUC EOM EOdd AUC EOM EOdd

DN 0.70± 0.02 0.60± 0.04 1.70± 0.08 0.68 0.59 1.65 0.71± 0.02 0.61± 0.04 1.68± 0.08 0.69 0.60 1.66

FairBatch-DN 0.72± 0.02 0.71± 0.03 1.02± 0.2 0.70 0.71 1.04 0.73± 0.02 0.68± 0.01 1.42± 0.15 0.71 0.70 1.44

FIN-DN 0.79± 0.02 0.73± 0.02 1.33± 0.17 0.81 0.72 1.34 0.79± 0.01 0.79± 0.05 1.32± 0.14 0.79 0.78 1.27

FaMI-DN 0.83± 0.01∗ 0.80± 0.01 0.92± 0.02 0.79 0.81 0.97 0.83± 0.01∗ 0.81± 0.01 0.95± 0.02 0.80 0.79 1.01

FaMI-ViT 0.82± 0.01 0.81± 0.01∗ 0.88± 0.06∗ 0.81 0.82 0.85 0.82± 0.01 0.82± 0.01∗ 0.98± 0.07∗ 0.81 0.84 0.96

MINE-DN 0.74± 0.02 0.72± 0.03 1.28± 0.05 0.72 0.71 1.30 0.75± 0.02 0.73± 0.03 1.27± 0.05 0.73 0.72 1.28

MINE-ViT 0.75± 0.02 0.73± 0.03 1.25± 0.05 0.74 0.72 1.24 0.75± 0.02 0.73± 0.03 1.25± 0.05 0.74 0.72 1.24

MIGE-DN 0.78± 0.02 0.78± 0.02 1.10± 0.03 0.76 0.77 1.12 0.78± 0.02 0.79± 0.02 1.09± 0.03 0.77 0.78 1.11

MIGE-ViT 0.79± 0.02 0.79± 0.02 1.08± 0.03 0.78 0.78 1.10 0.79± 0.02 0.80± 0.02 1.07± 0.03 0.78 0.79 1.09

exhibiting the lowest TV and RMSE, with TV values of 1.13 (C1) and 1.21 (C2)
and RMSE of 0.01 for both datasets. By contrast, MINE-DN resulted in the
highest TV (20.27 C1, 4.85 C2) as well as RMSE (0.18 C1, 0.04 C2), reflecting
much more marked fluctuations. Our FaMI regulization and gradient optimiza-
tion thus reduces MI constraints more effectively to ensure a more reliable model
training process.

6 Concluding Remarks

In this work, we introduced a novel approach to leveraging mutual information
regularization to learn fairness-aware deep imaging representations. We provide
rigorous analytical justification to develop a gradient-based fairness-aware MI
(FaMI) penalty term to effectively mitigate biases while preserving classifica-
tion accuracy. Validation of FaMI variants for the popular DenseNet and Vision
Transformer architectures demonstrated significant improvements in fairness and
performance metrics compared to existing methods, including across racial and
sex-based subgroups. Future work will optimize efficiency, extend to multi-class
tasks, and assess generalization to unseen subgroups.
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