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Abstract. Neuropathic pain, affecting up to 10% of adults, remains
difficult to treat due to limited therapeutic efficacy and tolerability.
Although resting-state functional MRI (rs-fMRI) is a promising non-
invasive measurement of brain biomarkers to predict drug response in
therapeutic development, the complexity of fMRI demands machine learn-
ing models with substantial capacity. However, extreme data scarcity in
neuropathic pain research limits the application of high-capacity mod-
els. To address the challenge of data scarcity, we propose FMMTC , a
Foundation-Model-boosted Multimodal learning framework for fMRI-
based neuropathic pain drug response prediction, which leverages both
internal multimodal information in pain-specific data and external knowl-
edge from large pain-agnostic data. Specifically, to maximize the value of
limited pain-specific data, FMMTC integrates complementary informa-
tion from two rs-fMRI modalities: Time series and functional Connectivity.
FMMTC is further boosted by an fMRI foundation model with its ex-
ternal knowledge from extensive pain-agnostic fMRI datasets enriching
limited pain-specific information. Evaluations with an in-house dataset
and a public dataset from OpenNeuro demonstrate FMMTC ’s supe-
rior representation ability, generalizability, and cross-dataset adaptabil-
ity over existing unimodal fMRI models that only consider one of the
rs-fMRI modalities. The ablation study validates the effectiveness of
multimodal learning and foundation-model-powered external knowledge
transfer in FMMTC . An integrated gradient-based interpretation study
explains how FMMTC ’s cross-dataset dynamic behaviors enhance its
adaptability. In conclusion, FMMTC boosts clinical trials in neuropathic
pain therapeutic development by accurately predicting drug responses
to improve the participant stratification efficiency. The code is released
on https://github.com/Shef-AIRE/FMM_TC.

https://github.com/Shef-AIRE/FMM_TC
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1 Introduction

Neuropathic pain, caused by damage or disease in the somatosensory nervous
system [14], affects up to 10% of people over 30 years old [1]. Despite advances
in pharmacological treatments, nearly half of patients fail to achieve adequate
pain relief [8] due to low drug efficacy [6] and high rates of side effects [9]. This
underscores the urgent need for novel therapeutic approaches [21].

Although resting-state functional magnetic resonance imaging (rs-fMRI) is a
promising non-invasive measurement of brain biomarkers [21,3], its high dimen-
sionality [17], noisiness [5], and cross-individual variability [28] demand machine
learning (ML) models with substantial capacity. To capture complex patterns
in fMRI data, previous works have proposed advanced deep neural networks
with strong representation ability (e.g. transformers [15] and Mamba-based mod-
els [31]) that perform well with large-scale training data such as UK Biobank [22].

However, directly applying such cutting-edge machine learning models for
neuropathic pain fMRI analysis faces a significant challenge of extreme data
scarcity, leading to severe overfitting or training collapse problems. In fact, neu-
ropathic pain datasets usually have less than 100 participants [24] due to the
challenges in the data acquisition process (e.g. high costs, ethics). Therefore,
practical applications of advanced machine learning models with sophisticated
network architectures for neuropathic pain fMRI analysis are hindered.

To tackle this challenge, we propose FMMTC , a Foundation-Model-boosted
Multimodal learning framework for fMRI-based drug response prediction in neu-
ropathic pain therapeutic development. As shown in Fig. 1, FMMTC proposes
two novel modules to address data scarcity: a) multimodal learning across two
modalities of rs-fMRI: Time series (TS) and functional Connectivity (FC), and
b) transferring external knowledge from large-scale pain-agnostic fMRI datasets
via foundation models (FMs). Our contributions are three-fold:

Firstly, we introduce multimodal learning in FMMTC to exploit internal in-
formation in the limited pain-specific data by integrating complementary infor-
mation from TS and FC modalities. Although previous works [15,16,4] regard FC
and TS as one modality due to coming from the same source, FMMTC rethinks
them as two distinct modalities, encodes them in two separate streams, and fuses
their latent features by a simple yet effective design to enhance predictions. By
multimodal learning, FMMTC improves Matthews correlation coefficient (MCC)
by at least 2.80% compared to unimodal baselines across all experiments.

Secondly, FMMTC exploit the benefits of external knowledge that FM [4]
learns from large-scale pain-agnostic fMRI datasets (e.g. UK Biobank [22] with
50,000+ scans). Enriching limited internal information with rich knowledge from
the general population [22] beyond pain patients, this FM-powered external
knowledge transfer improves MCC by at least 14.71% compared to the model
with the same network architecture but no pre-training or external knowledge.
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Fig. 1. FMMTC pipeline. The raw rs-fMRI Xraw undergoes three processing steps
to obtain time-series (TS) XT . Then, functional connectivity (FC) XC is computed
from XT . Next, XT and XC are processed by a time-series (TS) encoder ET (frozen
fMRI foundation model) and a functional connectivity (FC) encoder EC (learnable
CNN), respectively. Finally, features of two modalities RT and RC are fused to get the
multimodal feature RTC for the following prediction.

Thirdly, we comprehensively evaluate FMMTC with one public dataset from
OpenNeuro [24] and an in-house dataset. Drug-agnostic and within-domain drug-
specific response prediction demonstrate FMMTC ’s promising representation
ability and cross-dataset adaptability (up to MCC=69.64% and AUROC=77.56%).
The out-of-domain drug-specific response prediction results show FMMTC ’s strong
generalizability (up to MCC=86.02%). We conduct an ablation study to demon-
strate the effectiveness of multimodal learning and external knowledge transfer,
and an interpretation study to understand the reason for its strong adaptability.

2 Methodology

Problem formulation. The drug response prediction task is formulated as a
binary classification problem. With a dataset of rs-fMRI images {Xraw} from
a cohort of participants, the goal is to learn a function fθ parameterized by θ
to predict participant’s drug response ŷ = fθ(Xraw) with label y=1 indicating
effective (responder) and 0 indicating no response (non-responder).
Overview of FMMTC . FMMTC has three major modules: a) data preparation,
b) multimodal learning, and c) FM-powered external knowledge transfer.
Data preparation. FMMTC requires dual stream and multimodal inputs: TS data
XT and FC data XC . To get TS data XT , we first process the raw fMRI Xraw

by 3 steps: (1) fMRI pre-processing: Xraw is processed by fMRI pre-processing
pipelines (e.g. fMRIPrep [7]) with steps like head motion correction. (2) Re-
size: The processed fMRI images are resized to match the standard ICBM152
space [10]. (3) Parcellation: we parcelize the resized fMRI data into N regions
of interest (ROIs) by an atlas to obtain TS data XT ∈ RN×t, where t refers
to time steps. In this context, an atlas is a neuroscientist-curated annotation
that clusters brain voxels based on their functional similarity, and each ROI is
a group of neurons that perform similar functions. After getting XT , we further
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compute FC data XC by the correlation [2] between TS data XT and itself along
the time dimension XC = Cor(XT ,XT ),XC ∈ RN×N .
Multimodal learning. A key contribution to this work is that we rethink TS
and FC as two distinct modalities instead of two features from one modality.
We use two separate encoders: a time-series (TS) encoder ET and a functional
connectivity (FC) encoder EC to process the multimodal input, which gives
us TS and FC features RT = ET (XT ) ∈ RM and RC = EC(XC) ∈ RM ,
respectively. Here, M is the size of output features. To fuse RT and RC and
obtain multimodal feature RTC , a feature fusion scheme fusion(·) is introduced:
RTC = fusion(RT ,RC).

We regard TS and FC as two distinct modalities for two reasons: (1) Their
information is different and complementary. TS focuses on fine-grained, regional
features and provides more temporal information [27], while FC constructs a
global brain network emphasizing spatial relationships between regions [11]. (2)
For ML models, the global patterns in FC might not be directly learnable from
TS data, especially with such small datasets [25]. In this situation, FC provides
an explicit and complementary global summary of the information in TS data.
To exploit this complementarity, FMMTC treats them as two distinct modalities.
FM-powered external knowledge transfer. To enrich the limited information in
pain-specific data, we use FM to introduce external knowledge. FM learns rich
knowledge by pre-training on large fMRI datasets, with which it can extract
robust representations from data and generalize effectively with small, domain-
specific pain datasets [4]. FMMTC leverages BrainLM [4] here, which is a founda-
tion model for TS data with rich knowledge obtained from 6,700 hours of fMRI
data from 50k+ UK Biobank participants [22].
Detailed design of FMMTC . We now discuss the designs of encoders ET , EC

and the feature fusion method fusion(·), and the motivations for design decisions.
BrainLM as TS encoder and rationale. we use BrainLM’s encoder [4] to imple-
ment ET , which is a 4-layer 4-head transformer with an efficient self-attention
mechanism to reduce computational complexity while maintaining global con-
text [32]. We use the class token of the output of BrainLM to get RT . BrainLM
is frozen during training to stabilize training and avoid mode collapse when fine-
tuned on small, domain-specific pain datasets. Traditional knowledge distillation
[33] is not applied in our study due to a) limited pain-specific training data, and
b) restricted access to BrainLM’s original pre-training dataset: UK Biobank [22].
ResNet-18 as FC encoder and rationale. We simply implement EC with the
backbone of ResNet-18 EResNet [13] alongside a linear projection layer h after-
ward to align EResNet’s output dimensions with RT . Thus, EC = h ◦ EResNet

and we train it from scratch. The choice of using ResNet for EC is based on
three reasons: (1) FC matrices capture spatial relationships between brain re-
gions, sharing structural similarities with 2D images. (2) While more advanced
models like transformers [15] work well in large-scale fMRI analysis, they deliver
unsatisfactory performances with limited pain-specific data. (3) CNN is proven
effective for FC data [16,30]. By applying ResNet as EC , we balance simplicity
and performance under severe data scarcity.
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Table 1. Simple feature concatenation outperforms advanced feature fusion schemes.

Method Unidirectional
cross-attention [19]

Bidirectional
cross-attention [19]

Mixture-of-
experts [12]

Element-wise
summation Concatenation (ours)

MCC (%) 0 44.12 0 53.93 69.64

Table 2. Metadata of the in-house dataset and the OpenNeuro [24] dataset.

Dataset No. Mean age Gender Given drugs Response labels
In-house 61 58.3 (40-82) Male(38), Female(23) Lidocaine(61) y = 1(24), y = 0(37)

OpenNeuro [24] 56 57.9 (44-73) Male(26), Female(30) Duloxetine(19),Placebo(37) y = 1(26), y = 0(30)

Multimodal feature fusion via concatenation and rationale. We apply concatena-
tion (concat(·)), a simple yet effective method to get the fused multimodal feature
RTC by RTC = concat(RT ,RC),RTC ∈ R2M . In our preliminary experiments
(see Table 1), we found advanced multimodal feature fusion techniques including
attention-based [19] and mixture-of-experts (MoE) [12] delivered unsatisfactory
performance, likely due to limited training data. Element-wise summation’s sub-
optimal performance could be incompatible element-wise semantics in features
from the transformer (ET ) and ResNet (EC). Concatenation preserves individ-
ual semantics in RT and RC , allowing the following layers to dynamically adjust
feature prioritization.
Model training. FMMTC is trained end-to-end. After feature fusion, a single-
layer perceptron classifier p(·) is attached for the downstream drug response
prediction: ŷ = p(concat(ET (XT ), EC(XC))). The training is driven by a binary
cross-entropy loss between predictions ŷ and labels y: LBCE(ŷ,y).

3 Experiments

3.1 Experiment Setup

Datasets. The metadata of the in-house and OpenNeuro [24] datasets are shown
in Table 2. The OpenNeuro dataset is the patient cohort of the DS000208 dataset
from the OpenNeuro platform [24]. The in-house data are collected from the local
hospital and de-identified. Written informed consent for the in-house data was
obtained before subjects participated in the study, which had prior approval by
the Sheffield Local Research Ethics Committee (Sheffield, U.K.). fMRI scans in
both datasets are pre-treatment scans.
Baselines. We compare a) FMMTC as an end-to-end predictive model against
four TS baselines (LSTM [18], ResNet [13], BrainLM [4] w/wo pre-training) and
two FC baselines (ResNet [13], BNT [15]), and b) FMMTC-extracted feature
RTC for linear machine learning classifiers against raw TS/FC data (XT , XC),
PCA-extracted features (PCA(XT ), PCA(XC)), and BrainLM-derived features
(BrainLM(XT )) [4]. We also provide a random guessing experiment simulating
conventional random participant recruitment in clinical trials. Random guessing
is repeated 1,000 times. Other reported results are under 5-fold cross-validation.
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Table 3. FMMTC vs. unimodal baselines on drug-agnostic response prediction. The
results of the ablation study are also shown by comparing Exp. 5, 7, 8, 9.

Dataset
Exp.
ID Model

Input
modality

Pre-
training

Metrics (%)
F1↑ BACC↑ AUROC↑ MCC↑

O
pe

nN
eu

ro
[2

4]

1 Random N/A ✗ 49.57±11.39 50.64±11.49 50.64±11.49 1.29±22.96
2 LSTM [18] TS ✗ 63.95±11.94 67.33±8.38 51.67±12.80 43.68±16.89
3 BNT [15] FC ✗ 34.90±0.88 50.00±0.00 51.00±18.88 0.00±0.00
4 ResNet [13] TS ✗ 63.36±9.21 67.00±7.58 50.00±14.91 42.79±12.90
5 ResNet [13] FC ✗ 66.79±12.64 69.33±10.97 55.11±29.58 44.23±20.91
6 BrainLM [4] TS ✗ 34.90±0.88 50.00±0.00 44.56±16.50 0.00±0.00
7 BrainLM [4] TS ✓ 79.38±8.77 80.00±8.16 71.44±15.28 63.36±14.47
8 FMMTC TS+FC ✗ 70.18±14.04 73.67±11.87 60.67±25.43 54.93±18.50
9 FMMTC TS+FC ✓ 80.51±16.11 82.33±14.12 77.56±26.98 69.64±23.32

In
-h

ou
se

1 Random N/A ✗ 47.96±11.61 49.12±11.66 49.12±11.66 -1.77±23.35
2 LSTM [18] TS ✗ 37.72±1.38 50.00±0.00 64.84±37.41 0.00±0.00
3 BNT [15] FC ✗ 34.90±0.88 50.00±0.00 51.00±18.88 0.00±0.00
4 ResNet [13] TS ✗ 66.98±12.74 68.67±11.63 59.67±15.20 41.86±22.42
5 ResNet [13] FC ✗ 75.68±9.33 75.64±9.27 68.96±11.74 60.92±12.58
6 BrainLM [4] TS ✗ 34.90±0.88 50.00±0.00 44.56±16.50 0.00±0.00
7 BrainLM [4] TS ✓ 74.83±16.81 75.71±15.32 73.88±24.06 59.01±26.53
8 FMMTC TS+FC ✗ 66.92±21.59 72.14±16.95 71.43±21.29 48.32±32.64
9 FMMTC TS+FC ✓ 80.32±13.89 81.07±13.87 75.20±26.14 63.72±26.77

Implementation of FMMTC . We use fMRIPrep [7] in fMRI pre-processing.
We use A424 [23] atlas in parcellation following BrainLM [4]. The number of
ROIs N is 424. XT is truncated or padded to a fixed length of 200 and patchified
with a patch size of 20. The feature dimension M is 256.
Metrics. We report four metrics: F1, balanced accuracy (BACC), AUROC, and
Matthew correlation coefficient (MCC). Because MCC fairly measures TP, TN,
FP, and FN, we use MCC as the primary metric to select the best models. The
bests are bolded and the second bests are underlined.
Experiment design of drug response prediction. We perform drug-agnostic
and drug-specific response prediction in experiments. Drug-agnostic response
prediction is to predict whether a patient is a responder regardless of the types of
drugs and can be mathematically described as ŷ = fθ(Xraw). It is the first step in
clinical trials, reducing trial costs and time by focusing on likely responders [26].
Drug-specific response prediction is to predict the responses for specific drugs
and can be described as ŷ = fθ(Xraw|d), where d is the type of given drugs. It
can help clinicians select participants that are more targeted and fine-grained.

3.2 Experiment Results

Superiority of FMMTC in end-to-end prediction. We evaluate FMMTC on
drug-agnostic response prediction against: a) four baselines for TS data (LSTM [18],
ResNet [13], BrainLM [4] w/wo pre-training) and b) two baselines for FC data
(ResNet [13], BNT [15]) on OpenNeuro and in-house datasets (see Table 3).
BrainLM without pre-training (Exp. 6) and BNT (Exp. 3) struggle with limited
training data, highlighting challenges in training advanced ML with small fMRI
datasets. Other unimodal baselines (Exp. 2, 4, 5, 7) show inconsistent results
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Table 4. We compare the representation ability (within-domain) and generalizability
(out-of-domain) of FMMTC and BrainLM on drug-specific response prediction using
the OpenNeuro dataset. Given BrainLM’s expected generalizability as a foundation
model and its rank as the second-best model on the OpenNeuro dataset in Table 3, we
focus our comparison on FMMTC and BrainLM.

Setup
Training

drug
Testing
drug Model Metrics (%)

F1↑ BACC↑ AUROC↑ MCC↑

Within-
domain

Duloxetine Duloxetine BrainLM [4] 81.33±29.21 85.00±22.36 90.00±22.36 71.55±43.98
Duloxetine FMMTC 84.00±14.60 86.67±12.63 85.00±23.36 74.64±23.14

Placebo Placebo BrainLM [4] 77.84±12.87 79.17±12.84 78.33±21.17 60.37±25.68
Placebo FMMTC 88.95±6.29 89.17±6.32 89.17±9.93 80.59±11.00

Out-of-
domain

Duloxetine Placebo BrainLM [4] 55.40±16.43 58.19±13.43 71.36±9.21 16.67±27.20
Placebo FMMTC 92.30±4.97 92.27±5.41 91.59±7.73 86.02±8.91

Placebo Duloxetine BrainLM [4] 52.58±6.00 56.61±4.91 66.02±2.32 17.26±13.51
Duloxetine FMMTC 83.24±14.93 84.59±12.20 89.77±9.93 71.85±19.25

across datasets. FMMTC consistently outperforms all baselines, demonstrating
superior prediction performance and cross-dataset adaptability.

We evaluate FMMTC on drug-specific response prediction against BrainLM [4]
(see Table 4). We divide the OpenNeuro dataset into two subsets according to
the given drugs. We fine-tune BrainLM [4] and train FMMTC on one subset and
test them on both subsets. Results of within-domain tests show that FMMTC

outperforms BrainLM when training and testing on the same drug, illustrating
FMMTC ’s superior representation ability. FMMTC ’s strong generalizability is
demonstrated by out-of-domain evaluation: when training with one drug and
transferring to another, FMMTC outperforms BrainLM by a significant margin.
Effectiveness of multimodal feature RTC for linear classifiers. We eval-
uate FMMTC ’s representation ability as a feature extractor for linear machine
learning classifiers on drug-agnostic response prediction with the OpenNeuro
dataset. We compare multimodal feature RTC from FMMTC against unimodal
features from raw data, PCA, and BrainLM [4] with four commonly used linear
classifiers [20]: SVM, Ridge, k-NN, and XGBoost. The results in Fig. 2(a) show
that statistical machine learning approaches struggle to capture the complex
patterns in fMRI with their limited capacity. In contrast, FMMTC outperforms
all other feature extractors by a significant margin, indicating the effectiveness
of multimodal feature RTC and the strong representation ability of FMMTC .
Ablation study. We now demonstrate the effectiveness of multimodal learning
and FM-powered external knowledge transfer (see Exp. 5, 7, 8, 9 in Table 3).
Multimodal learning improves MCC by at least 2.80%. The effectiveness of
multimodal learning is demonstrated by comparing Exp. 5, 7, and 9 in Table 3,
where ResNet with FC and BrainLM with TS serve as two separate streams
of FMMTC . The results indicate that the performance of ResNet (Exp. 5) and
BrainLM (Exp. 7) varies across datasets, whereas FMMTC (Exp. 9) consistently
outperforms them, achieving strong and stable performance across datasets. This
highlights the superiority and cross-dataset adaptability of multimodal learning.
FM-powered external knowledge transfer improves MCC by at least 14.71%.
We evaluate the effectiveness of external knowledge in FMMTC by comparing
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Fig. 2. (a) Multimodal feature RTC from FMMTC outperforms unimodal features
from other feature extractors with linear classifiers on drug-agnostic response predic-
tion. (b) Feature importance via integrated gradients (IG) illustrates how FMMTC ’s
cross-dataset dynamic behaviors enhance adaptability: FMMTC flexibly prioritizes the
most effective modality in predictions. The light blue background is IG values for time-
series feature RT and the light red region is for functional connectivity feature RC .

FMMTC w/wo pre-training (Exp. 8, 9 in Table 3). The performance gap be-
tween the two models (69.64%/63.72% vs. 54.93%/48.32% on MCC) confirms
the importance of external knowledge and pre-training to address data scarcity.
Interpretation to FMMTC ’s cross-dataset adaptability. The high adapt-
ability of FMMTC is due to its flexible dynamic behaviors. We use integrated
gradients (IG) [29] to explain how FMMTC ’s flexible reliance on multimodal fea-
tures enhances its adaptability across datasets. A larger IG magnitude signifies
a higher impact of input features on the model’s predictions. We present IG
magnitudes for the final predictor of FMMTC , which takes the fused multimodal
features RTC as inputs and outputs predictions ŷ, shown in Fig. 2(b).

On the OpenNeuro dataset, TS features contribute more to the predictions
than FC features, while FC features have a stronger impact on the in-house
dataset. This observation aligns with the results of Exp. 5 and 7 in Table 3. When
BrainLM with TS outperforms ResNet with FC on the OpenNeuro dataset,
FMMTC relies more on the TS features and capitalizes on the strengths of TS
data. In the in-house dataset, ResNet with FC performs better than BrainLM
with TS, causing FMMTC to emphasize FC features in prediction.

These findings highlight FMMTC ’s cross-dataset dynamic behaviors and ex-
plain FMMTC ’s high adaptability. By combining TS and FC modalities, FMMTC

can dynamically adjust its reliance on various modalities based on the dataset
and task. This flexibility enables FMMTC to adapt effectively across diverse
conditions and data distributions, improving performance in various scenarios.
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4 Conclusion

To address the severe data scarcity in fMRI-based neuropathic pain drug re-
sponse prediction, we propose FMMTC , a foundation-model-boosted multimodal
learning framework with multimodal learning and foundation-model-powered
external knowledge transfer. FMMTC shows strong representation ability, gen-
eralization, and cross-dataset adaptability, enabling FMMTC with abilities to
predict treatment effects and enhance stratification in the participant recruit-
ment process, and with the potential to significantly reduce the time and money
costs associated with random methods in traditional clinical trials.
Acknowledgments. This study is funded by the Engineering and Physical Sciences
Research Council (EP/Y017544/1) for the "A Novel Artificial Intelligence Powered
Neuroimaging Biomarker for Chronic Pain" project.
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