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Abstract. Ultrasound (US) is widely used for surgical navigation, and
real-time intraoperative 2D US to preoperative 3D US registration is
crucial. However, existing methods either lack accuracy, suffer from low
efficiency, or are highly prone to overfitting. To address these challenges,
we propose a novel and Efficient end-to-end real-time 2D-3D US reg-
istration framework (EUReg). Specifically, we introduce a cross dimen-
sion flow estimator (CDFE) that is both learn-free and differentiable,
along with a decoupled transformation prediction (DTP) network. Fur-
thermore, we design a flow loss to supervise the coarse deformation
field, effectively decoupling the entire registration process into four se-
quential steps: feature extraction, coarse deformation field estimation,
translation estimation, and rotation estimation. In addition, we improve
the differentiable 2D-3D sampling process. We evaluate our framework
through comparative, ablation, and exploratory experiments on two pub-
lic datasets for cardiac and prostate US. Experimental results demon-
strate that our method achieves a registration speed exceeding 100 frames
per second (FPS) while maintaining high accuracy, meeting the require-
ments for clinical interventional procedures. Moreover, our exploration
reveals that registration accuracy improves when each frame within the
volume is larger than the target frame. Our code is publicly available at
https://github.com/ZAX130/EUReg.

Keywords: 2D-3D Registration · Ultrasound registration · Real-time
registration · Surgical navigation.

1 Introduction

Ultrasound (US) is widely used for surgical navigation and interventions due
to its real-time capability, low cost, and radiation-free nature [15,12]. Appli-
cations include cardiac interventions [11] and prostate biopsy [23,22], among
others [10]. Intraoperative 2D US, which is commonly used during procedures,
requires clinicians to rely on experience for interpretation and mentally fuse it
with preoperative intervention plans [10]. Clinicians typically acquire 3D US
scans preoperatively and fuse them with other surgical planning imaging modal-
ities to assist in intraoperative guidance [3,17]. However, accurately determining
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the spatial position of 2D US within the 3D US volume still relies heavily on
manual interpretation and clinical expertise, which is both time-consuming and
prone to errors. Consequently, automated real-time registration between intra-
operative 2D US and preoperative 3D US is crucial.

The goal of 2D-3D registration is to estimate a transformation that aligns a
2D slice sampled from the 3D volume with the target 2D image [9]. In this study,
we focus on single-frame-to-volume US registration, as multi-frame-based reg-
istration approaches often necessitate recalibration upon tracking loss, thereby
imposing significant operational constraints on the clinicians. Traditional 2D-
3D registration methods [26,20,5,8] often rely on iterative optimization, making
real-time (>30 frames per second (FPS)) registration infeasible. Existing deep
learning-based 2D-3D registration methods can be categorized into two distinct
approaches. The first approach use networks to extract features from 2D im-
age and 3D volume for matching, followed by transformation estimation using
RANSAC [6]. Representative methods include [4] and [19]. However, [4] requires
sampling hundreds of slices per key point in the volume to find feature corre-
spondences with 2D key points, making it highly inefficient. In contrast, [19]
applies attention mechanisms [25,1] to low-resolution 2D and 3D feature maps
and determines correspondences by selecting the highest attention score for each
row and column. However, this approach constrains feature matching to inte-
ger grid locations in the low-resolution space, limiting precision. Moreover, the
max-selection operation is non-differentiable, preventing end-to-end optimiza-
tion. Additionally, since RANSAC is an iterative process, it further restricts
real-time performance and seamless integration into deep learning pipelines.

Another category of deep learning methods [13,9,27,28,7,18] adopts an end-
to-end approach, directly modeling the mapping from input data to transforma-
tion parameters using neural networks. Among these, FVRNet [9] and CUReg [18]
are most relevant to our work, as they take a single 2D frame and a 3D US vol-
ume as input and directly output transformation parameters at near-real-time
speeds (>30 FPS) during inference. Specifically, FVRNet [9] concatenates deep
features from the 2D frame and 3D volume, followed by a prediction network
to estimate transformation parameters. CUReg [18] further improves feature
extraction by incorporating cross-attention mechanisms [25] and segmentation
features. However, these methods face notable limitations: they are prone to se-
vere overfitting, often relying on specific training set features for transformation
prediction, which limits generalizability. Moreover, these networks are designed
under the assumption that feature concatenation is feasible, requiring the frame
size in the input 3D US volume to match that of the target 2D US frame. In
such a case, the 3D volume fails to encompass sufficient view of the target frame,
thereby adversely affecting the matching accuracy.

To address the aforementioned challenges, we propose EUReg (see Fig. 1),
an Efficient end-to-end framework for real-time 2D-3D US registration. Our
framework employs attention mechanisms exclusively at the deepest layer and
introduces a cross dimension flow estimator (CDFE) to convert attention scores
into coarse deformation fields. To mitigate overfitting, we propose a flow loss
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Fig. 1. Illustration of the overall pipeline of the proposed EUReg.

to supervise the coarse deformation fields. Additionally, we design a decoupled
transformation prediction (DTP) network for accurately predicting transforma-
tion parameters, and optimize the sampling strategy to enhance both speed and
precision. Experiments on cardiac and prostate US datasets demonstrate that
EUReg achieves state-of-the-art accuracy with an inference speed exceeding 100
FPS, while requiring less than 0.4 GB of GPU memory. Ablation studies confirm
the efficacy of the proposed components. Furthermore, exploratory experiments
reveal that registration accuracy improves when each frame within the volume is
larger than the target frame. Our main contributions are summarized as follows:

• We propose EUReg, an efficient end-to-end framework for real-time 2D-3D
registration, leveraging a cross dimension flow estimator to convert attention
scores into deformation fields and a novel flow loss to mitigate overfitting.

• We introduce a decoupled transformation prediction network and an opti-
mized sampling strategy, achieving state-of-the-art accuracy with over 100
FPS and less than 0.4 GB GPU memory.

• Exploratory experiments reveal that registration performance improves when
the frame size in the 3D volume exceeds that of the target 2D frame, offering
valuable insights for future research.

2 Method

2.1 Task Definition

Let the 2D target frame be denoted as Is and the 3D volume as Iv. We consider Is
as the fixed image and Iv as the moving image. Before registration, we assume
that Is is initially positioned at the center of Iv, as illustrated in Fig. 2(b).
The goal of registration is to predict the optimal transformation πθ = (T,R) =
{tx, ty, tz, rx, ry, rz} using a network, such that the resampled image Iw = Iv ◦πθ

is well aligned with Is. Here, T = {tx, ty, tz} denotes the translation parameters,
R = {rx, ry, rz} represents the rotation parameters, θ corresponds to the network
parameters, and ◦ represents the resampling operation, which is implemented
using a Spatial Transformer Network (STN) [14], as shown in Fig. 1.
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Fig. 2. Illustration of (a) the computation of Gc, and (b) the sampling process.

2.2 Overall Framework

Our end-to-end framework can be broadly divided into four stages, as illustrated
in Fig. 1. First, Iv and Is are processed by a 3D and a 2D CNN encoder, re-
spectively, to obtain feature maps at 1

8 original resolution: Fv ∈ RMv×Hv×Wv×C

and Fs ∈ RHs×Ws×C , where Mv, Hv, Wv and Hs, Ws are the size of moving and
fixed feature maps, respectively, and C is the channel number. These feature
maps are then projected and normalized by LayerNorm (LN) to obtain query
Q and key K. Subsequently, they are passed through the cross dimension flow
estimator (CDFE) to estimate a coarse deformation flow ϕ ∈ RHs×Ws×3. Next,
ϕ is further refined through TransNet and RotNet to predict the transformation
parameters T and R. Finally, the resampling operation for extracting Iw from
Iv is performed following the sampling strategy illustrated in Fig. 2(b).

2.3 Cross Dimension Flow Estimator

This module computes the deformation field from the 3D feature map to the
2D feature map in a parameter-free manner, as illustrated in the CDFE module
in Fig. 1. We define the center of the volumetric feature map as the origin and
introduce a 3D identity grid Gv ∈ RMv×Hv×Wv×3 along with a 2D identity grid
Gs ∈ RHs×Ws×3. The computation of the coarse flow ϕ is then formulated as:

Gc = σ(Q ·KT )Gv, Gv ∈
[
±Mv − 1

2
,±Hv − 1

2
,±Wv − 1

2

]
, (1)

ϕ = Gc −Gs, Gs ∈
[
0,±Hs − 1

2
,±Ws − 1

2

]
, (2)

where σ denotes the softmax function, and Q · KT corresponds to the atten-
tion matrix [25,1] in Fig. 1. Here, Gc ∈ RHs×Ws×3 represents the set of cross-
dimensional correspondence points.

Fig. 2(a) illustrates how our method achieves matching relationships that
overcome resolution limitations. The softmax-based attention scores assign each
2D index j in Q a probability distribution pj(i) over all 3D indices i in K.
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Consequently, for each j, Eq (1) effectively computes the expectation Epj
(i), de-

termining the most likely matching position in 3D space. This expectation-based
formulation makes the module differentiable and enables sub-voxel precision. In
contrast, [19] selects the index i with the highest pj(i) as the best match for j,
making the match resolution-dependent and non-differentiable.

2.4 Decoupled Transformation Prediction

To predict the translation and rotation parameters πθ, we exclusively use ϕ as
input to avoid overfitting to specific image content in the training set. Further-
more, as illustrated in Fig. 1, instead of simultaneously predicting T and R,
we first predict the low-resolution translation parameters Td using a translation
network (TransNet). Next, we eliminate the influence of translation by applying
ϕ−Td and normalize the input using the circumradius of Is before feeding it into
the rotation network (RotNet), which further outputs R. Finally, Td is upsam-
pled to the original resolution to derive T . Note that both TransNet and RotNet
consist of three convolutional layers with LeakyReLU activation and pooling,
followed by a four-layer multilayer perceptron (MLP).

Above design is motivated by the fact that the predicted rotation corresponds
to the rotation of Is around its own center, while the translation represents the
overall movement after rotation. Thus, our network decouples the Is, Iv → πθ

prediction process into 4 steps: Is, Iv → ϕ (no learnable parameters) → T → R,
while maintaining end-to-end differentiability throughout the entire pipeline.

2.5 Efficient Differentiable Sampling

Both [9] and [18] employ the same volume resampling strategy: they create a
grid matching the size of Iv via πθ, sample Iv, and extract Iw using the center
frame index. However, such method is lack of efficiency and accuracy, as indexing
rounds positions. In contrast, our approach generates a grid matching the size of
Is using πθ and directly samples Iw from Iv (see Fig. 2(b)), ensuring efficiency,
accuracy, and differentiability.

2.6 Loss Functions

Let T ∗, R∗, and ϕ∗ denote the ground truth values of T , R, and ϕ, where ϕ∗ is
derived from T ∗ and R∗ (similar as Eq (4)). To train the network end-to-end, we
employ a hybrid loss function consisting of four components: the translation loss
Ltrans, rotation loss Lrot, image similarity loss Lsim, and flow loss Lϕ. Specifically,
Ltrans and Lrot are defined as follow:

Ltrans = Lsml1(T − T ∗), Lrot = Lsml1(R−R∗), (3)

where Lsml1 denotes the smooth L1 loss. Furthermore, Lsim is the negative local
normalized cross correlation (LNCC) [21], computed between Iw and Is.
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Table 1. Experimental data settings. The last six columns specify sampling ranges:
tx, ty, tz for translation (in voxels) and rx, ry, rz for rotation (in degrees), where ±α
denotes sampling from a uniform distribution U(−α, α).

Setting Dataset Volume Size Frame Size tx ty tz rx ry rz

i CAMUS 32×128×128 128×128 ±10 ±10 ±10 ±10 ±10 ±10
ii ProReg 40×64×64 64×64 ±10 ±5 ±5 ±10 ±10 ±10

iii CAMUS 32×192×192 128×128 ±10 ±10 ±10 ±10 ±10 ±10
iv CAMUS 32×192×192 128×128 ±10 ±20 ±20 ±20 ±20 ±20
v ProReg 40×80×96 64×64 ±10 ±5 ±5 ±10 ±10 ±10
vi ProReg 40×80×96 64×64 ±10 ±10 ±10 ±20 ±20 ±20

A key factor in the success of our approach is the flow loss in the CDFE,
enabling the network to learn accurate correspondences for each Qj , thereby
mitigating overfitting. Let ϕ̂∗ and Ĝs denote the homogeneous coordinates of ϕ∗

and Gs, respectively. The homogeneous flow ϕ̂∗ and Lϕ are then formulated as:

ϕ̂∗T= (A− I)Ĝs
T
, A =

[
R∗

mat T
∗
d

0 1

]
, (4)

Lϕ = Lsml1(ϕ− ϕ∗) + Lsml1(∥∇ϕ∥2 − ∥∇ϕ∗∥2), (5)

where R∗
mat represents the rotation matrix corresponding to R∗, T ∗

d is the down
scaled (downsampled) version of T ∗, and I represents the identity matrix.

3 Experimental Settings

We utilized two publicly available US datasets, CAMUS [16] and ProReg [2],
which contain 1,000 cardiac US volumes and 73 prostate US volumes, respec-
tively. After resampling, the spacings were set to 0.62mm× 0.62mm× 0.62mm
and 0.8mm × 0.8mm × 0.8mm. For CAMUS, 900 cases were used for training
and 100 for testing. For ProReg, 65 cases were allocated for training and 8 for
testing, with each case split along the frame dimension, resulting in 130 train-
ing and 16 testing samples. To investigate the impact of different input sizes
and transformation ranges, we designed six data preprocessing settings, as de-
tailed in Table 1. Settings i and ii represent scenarios where the frame size in
the volume matches the target frame size (as in [9] and [18]), while the others
differ. Setting i uses the preprocessed CAMUS dataset published by [18], where
training volumes are sampled with identity transformations, and target frames
are pre-sampled with transformations, with each volume sampled four times.
Other settings follow similar sampling methods for volumes and target frames
but employ real-time sampling during training. For testing, cardiac volumes were
sampled four times, while prostate volumes were sampled ten times. Note that
settings ii and v share the same target transformations in the test set, differing
only in volume size.
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Fig. 3. Qualitative comparison on the registration results of different methods on two
datasets, including resampled frames and their difference maps with the target frames.

We compared our method with end-to-end deep learning models, FVRNet [9]
and CUReg [18]. During training, we used a batch size of 6. For FVRNet and
CUReg, we adopted the learning rate of 5×10−5 as recommended in their papers,
while our model used a learning rate of 1 × 10−4. The Adam optimizer and a
learning rate decay strategy were employed, with training steps set to 6 × 105.
For setting i, we utilized the pre-tuned network weights provided by CUReg. All
experiments were conducted using PyTorch on an RTX 2080 Ti GPU. Our code
is publicly available at https://github.com/ZAX130/EUReg.

We used the following seven metrics to evaluate the performance [9,18]. Dis-
tance error (DE, mm): measures the average displacement between the center
and four corners of Iw and Is. NCC between images (I-NCC, %) [21] & struc-
tural similarity index measure (SSIM, %) [24]: evaluate image similarity between
Iw and Is. Translation error (TE, mm): represents the L2 distance between the
T and T ∗. Rotation error (RE, °): represents the L2 distance between the R and
R∗. NCC between parameters (P-NCC, %): measures the consistency between
πθ and π∗. Frames per second (FPS): represents the inference speed.

4 Results and Discussion

Table 2 presents the quantitative results under all settings, where results un-
der settings i and ii demonstrating the superior accuracy and efficiency of our
method (all the improvements are statistically significant). Compared to previous
end-to-end methods, our method attains the best registration accuracy across all
metrics while maintaining a frame rate exceeding 190 FPS and a GPU memory
footprint below 400 MB. Fig. 3 shows the qualitative comparison. This efficiency
enables real-time, high-precision guidance during image-guided interventions.

The ablation results (w/o CDFE and w/o DTP) in Table 2 further validates
the efficacy of our proposed modules, where w/o CDFE refers to the feature maps
from the dual encoders are directly concatenated and fed into DTP, while w/o
DTP indicates the scenario where a single network is employed to predict both
translation and rotation parameters simultaneously. Specifically, the removal of
the CDFE results in a noticeable performance degradation. This suggests that
the proposed CDFE plays a crucial role in predicting transformation across dif-

https://github.com/ZAX130/EUReg
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Table 2. Experimental results for all settings in terms of mean values of evaluation
metrics. ↑ / ↓ indicates the higher/lower the score, the better. Note that “Initial” refers
to initializing Iw at the center of Iv, which means T = R = 0.

Setting Method DE ↓ I-NCC ↑ SSIM ↑ TE ↓ RE ↓ P-NCC ↑ FPS↑

i

Initial 7.86 54.21 34.42 5.25 9.82 – –
FVRNet [9] 4.56 80.31 45.37 2.67 6.86 71.38 33
CUReg [18] 3.93 88.07 60.53 2.49 6.24 74.07 38

EUReg 1.55 93.72 75.84 0.79 2.61 96.62 191

w/o CDFE 4.80 84.40 54.20 3.06 7.83 64.31 214
w/o DTP 2.05 92.18 72.91 1.01 3.64 92.89 223

ii

Initial 6.46 61.77 31.28 5.33 9.59 – –
FVRNet [9] 6.10 59.96 32.54 5.37 8.44 33.37 59
CUReg [18] 4.46 74.01 49.70 3.72 7.68 55.25 43

EUReg 1.97 85.72 74.69 1.29 4.59 89.79 212

w/o CDFE 4.79 74.47 48.75 4.11 7.68 51.41 235
w/o DTP 2.11 85.07 72.29 1.39 4.89 88.27 231

iii Initial 8.04 58.76 33.15 5.79 9.39 – –
EUReg 0.83 96.94 85.24 0.50 1.22 99.06 120

iv Initial 13.81 35.19 27.56 9.95 15.19 – –
EUReg 0.92 96.42 82.27 0.55 1.26 99.62 120

v Initial 6.46 61.77 31.28 5.33 9.59 – –
EUReg 1.84 94.25 78.65 1.15 4.49 90.48 206

vi Initial 10.18 42.10 23.96 7.39 18.74 – –
EUReg 2.18 92.20 73.58 1.27 5.41 95.36 206

ferent dimensions. In addition, the designed DTP network can further refine the
transformation by decoupling the prediction process.

The exploratory experimental results under settings iii, iv, v, and vi are
further reported in Table 2. Notably, CUReg and FVRNet cannot handle such
input configurations. By comparing i and ii with iii and v, we conclude that
registration accuracy improves with larger volumetric inputs, as they provide
a more comprehensive representation of the 2D frame’s field of view. Particu-
larly, under settings iii and iv, our method achieves subvoxel-level translation
accuracy (<0.62 mm), 0.50 mm and 0.55 mm respectively, attributed to the
proposed CDFE module, which enables matching beyond the resolution limit.
Furthermore, even under larger initial errors (iv and vi), our method consistently
delivers satisfactory results. Based on the P-NCC results, it can be observed that
the transformations predicted by our method exhibit a high degree of consistency
with the ground truth.
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5 Conclusion

In this paper, we propose EUReg, an efficient end-to-end framework for 2D-3D
US registration. Our framework consists of a dual-branch encoder, a cross di-
mension flow estimator, and a decoupled transformation estimator, which effec-
tively separates the process of predicting transformation parameters from image
features while maintaining end-to-end trainability. Additionally, we refine the
sampling strategy for improved efficiency. Extensive experiments demonstrate
the superior accuracy and efficiency of our framework. Furthermore, additional
exploratory studies reveal that registration performance improves when the vol-
ume’s per-frame dimensions exceed those of the target frame.
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