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Abstract. Medical imaging data and electronic health records are an in-
tegral part of clinical routine and research for prognostication of patient
survival and thus directly inform patient management. However, stan-
dard regression models used to derive patient prognoses are ill-equipped
to handle such non-tabular data directly. Several neural network architec-
tures based on classification or the Cox model have been proposed. Here,
we present deep conditional transformation models (DCTMs) for survival
applications with medical imaging data. DCTMs include the Cox model
as a special case, but parameterize the log cumulative baseline hazards
via Bernstein polynomials and allow the specification of non-linear and
non-proportional hazards for both tabular and non-tabular data and ex-
tend to all types of uninformative censoring. DCTMs yield moderate to
large performance gains over state-of-the-art deep learning approaches to
survival analysis on a multitude of publicly available datasets featuring
tabular or imaging data from radiology and pathology.

Keywords: Computational pathology · deep learning · radiology · sur-
vival analysis · transformation models.

1 Introduction

Arguably one of the most important aspects of health and medical research is
being able to understand, prognosticate and predict patient survival in order
to improve patient management and ultimately extend their life span or time
in remission [9]. Survival analysis is used for these purposes to study time-to-
event information relating to for example death, response to treatment, adverse
treatment effects, disease relapse, and the development of new treatments [4].
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Traditional approaches, such as Cox proportional Hazards [5, CPH], relied on
tabular features and are not amenable to analyze high-dimensional non-tabular
data such as medical images. With recent advances in computer vision and deep
learning (DL), there has been increasingly more interest in performing survival
analysis directly from high-dimensional data in order to automatically learn
patterns that stratify patients based on their outcome without the need for
feature engineering [17,22,14,2].

1.1 State-of-the-art in deep learning for survival analysis

Early deep learning (DL) approaches to survival analysis [20] drew inspiration
from the Cox proportional hazards (CPH) model [5], using the partial likeli-
hood as a loss function and extending it to handle piece-wise constant haz-
ards, non-proportional hazards, and non-linear effects. For instance, DeepSurv
[13] optimizes the ℓ2-regularized log partial-likelihood, while [24] introduces a
mixture of Cox models using variational inference. In contrast to these semi-
parametric methods, [23] proposes a fully parametric variational framework.
Other approaches include a generative Weibull model [25] and piece-wise ex-
ponential hazard functions within a penalized likelihood loss [6]. Additionally,
“DeepHazard” [32] uses a squared error loss based on the counting process, ac-
commodating time-varying covariates, non-linear effects, and non-proportional
hazards while accounting for censoring.

Beyond Cox-inspired methods, survival analysis can also be framed as a clas-
sification problem. For example, [30] introduce “neural multi-task logistic regres-
sion” (N-MTLR), which divides the time axis into intervals and uses a softmax
final layer to model event indicators. Similarly, [18] propose “dynamic DeepHit,”
an extension of “DeepHit” [19], which also employs a softmax final layer and
handles competing risks and non-linear effects.

Our proposed class of models belongs to the family of deep conditional trans-
formation models [26] (DCTMs), which have been studied for continuous [1]
and discrete [15] outcomes and can be understood as a conditional normalizing
flow [16]. DCTMs extend the flexible class of conditional transformation models
[10,11] (CTMs) with deep neural networks to handle non-tabular data, such as
images.

1.2 Our contribution

In this paper we present DCTMs for survival analysis with medical data as a
flexible framework for deep learning based survival analysis rooted in statistical
modeling and including the CPH model as a special case.

– Our DCTMs allow the specification of non-linear and non-proportional haz-
ards for both tabular and non-tabular (image or text) data.

– Our DCTMs can be understood as a flexible modular survival head which
can be combined with arbitrary feature extractors and foundation models
tailored towards specific applications.
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– DCTMs are shown to yield superior prediction and discrimination perfor-
mance in terms of a time-dependent c-index on several tabular, radiological
and histopathological datasets.

To the best of our knowledge, this paper is the first to extend DCTMs to survival
regression and present strong empirical evidence for improved performance on
relevant medical imaging tasks over established approaches.

2 Background

Survival analysis. Let (T ∗, C,X) ∈ R+ ×R+ ×X , where T ∗ denotes the true
event time, C denotes the censoring time and X denotes features. We observe
n i.i.d. realizations {(ti, xi, δi)}ni=1 of (T,X, δ), where T = min{T ∗, C} and δ =
1(T < C) is the event indicator. Survival analysis targets the distribution of the
event time T conditional on features X, on the scale of the survivor function,
ST |X(t|x) := P(T > t|X = x). One of the most popular choices is the CPH
model [5],

ST |X(t|x) = exp(−Λ(t|x)) = exp(−Λ0(t) exp(x
⊤β)), (1)

where Λ : R+ × X → R+ denotes the positive, increasing cumulative hazard
function. The hazard function is assumed to be decomposable into a baseline
hazard Λ0 : R+ → R+, independent of the covariates, and multiplicative feature
effects exp(x⊤β) with coefficients β representing log-hazard ratios [4]. The CPH
model is estimated by maximizing the maximum partial likelihood.

Conditional transformation models. CTMs are distributional regression
models of the form [10]

ST |X(t|x) = 1− FZ(h(t|x)), (2)

where the conditional survivor function of the response given the features T |X =
x is decomposed into an a priori chosen and parameter-free target distribution
FZ and a conditional transformation function h, which depends on the features
X = x. In order for ST |X to be a valid survivor function, it is sufficient for h to
be continuous and monotonically increasing in t for all x ∈ X [11]. CTMs can
be estimated via maximum likelihood and allow various kinds of responses and
uninformative censoring. The model in (2) is closely connected to the CPH model
in (1): For FZ(z) = 1−exp(− exp(z)) (the minimum extreme value distribution)
and h(t|x) = logΛ(t|x), the two models coincide.

3 DCTMs for survival analysis

We propose DCTMs (Figure 1), which parameterize the transformation function
h in (2) via (deep) neural networks. For instance, let ϕ : X → Rd denote a fea-
ture extractor, which maps the input x to a feature vector of dimension d. The
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Fig. 1. Proposed deep conditional transformation model (DCTM) architecture. The
model processes tabular or non-tabular explanatory variables (e.g., images) for survival
data, handling exact or right-censored event times. Non-tabular inputs are mapped to
a latent feature space using a feature extractor ϕ (e.g., a neural network), followed by
the DCTM head. DCTMs can be trained by minimizing the negative log-likelihood
(NLL). The right panel shows the transformation function (h), cumulative distribution
function (CDF), probability density function (PDF), and NLL for an exact event.

extracted features are finally passed through a last layer with linear activation
and weights w. We propose different parameterizations for the transformation
function to control the desired complexity of the model: A shift, scale and general
DCTM with a non-linear function in t using Bernstein polynomials. The com-
plexity of DCTMs can be tuned via cross-validation or on a hold-out set. For all
experiments, we choose the standard logistic cumulative distribution function
(CDF) σ(z) = (1 + exp(−z))−1 as the target distribution. Consequently, the
transformation function can be interpreted on the log-odds scale.

Assuming T takes values in an interval [l, r] ⊂ R+, the shift DCTM, DCTMS ,
employs Bernstein polynomials of order K and additive feature effects,

h(t|x;ϕ) = b(t)⊤ϑ+ ϕ(x)⊤w, where b : [l, r] → RK+1, w ∈ RP ,

where bk(t) :=
(
K
k

)
t̃k(1− t̃)K−k and t̃ = t−l

r−l . Ensuring ϑk+1 > ϑk, k = 0, . . . ,K,
for all x, is sufficient to ensure monotonicity of h(t|x;ϕ) in t [10]. We enforce
monotonicity via ϑ = g(γ) =

(
γ1, γ1 + softplus(γ2), . . . , γ1 +

∑K+1
k=2 softplus(γk)

)
.

For the more flexible shift scale DCTM, DCTMSS , we use

h(t|x;ϕ) = softplus(ϕ(x)⊤β) · b(t)⊤ϑ+ ϕ(x)⊤w,

which allows for non-proportional hazards using a scale term. Allowing the pa-
rameters of the Bernstein polynomials to fully flexibly depend on x, we arrive
at the most flexible general DCTM, DCTMG:

h(t|x;ϑ) = b(t)⊤ϑ(ϕ(x)), where ϑ : RP → RK+1,

The general DCTMG, allows a flexible baseline hazard function that captures
also higher moments of ST |X , resulting in a distribution-free model [27,16].
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3.1 Training and evaluating DCTMs

DCTMs are fitted by minimizing the empirical NLL: A single observation (t, x, δ)
contributes

L(h; t, x, δ) =

{
σ(h(t|x))(1− σ(h(t|x))h′(t|x) δ = 1,

1− σ(h(t|x)) δ = 0.

to the NLL. The empirical NLL is then given by NLL = −
∑nt

i=1 logL(h; ti, xi, δi),
and minimized over the nt training samples using any deep learning optimiza-
tion routine. Interval- and left-censored observations can also be handled with
the proposed method see, e.g., [11].

After fitting a DCTM, the conditional survivor function of a test observation
can be computed from the estimated parameters via ŜT |X(t|x) = 1−FZ(ĥ(t|x)).
Now, all evaluation metrics can be computed from (some form of) the predicted
conditional distribution. The time-dependent c-index [8] is defined as

c(t) =

∑n
i=1

∑n
j=1 1(tj < ti) · 1(Λ̂(t|xj) > Λ(t|xi)) · 1(tj < t)∑n

i=1

∑n
j=1 1(tj < ti) · 1(tj < t)

,

and measures the concordance between event times and predicted hazards. The
integrated inverse probability of censoring weighted Brier score (IBS)

IBS =

∫ maxi ti

0

1

n

n∑
i=1

δi1(ti ≤ t)ŜT |X(t|xi)
2 + I(ti > t)(1− ŜT |X(t|xi))

2

Ĝ(ti)
,

measures quality of probabilistic predictions, where Ĝ(t) denotes an estimate of
the unconditional probability of not being censored until time t.

4 Experiments and results

We extensively evaluate DCTMs against competing methods on several datasets
involving tabular features, computed tomography (CT) images, and histopathol-
ogy whole slide images. The experiments are carried out as ablation studies to
explore the flexible DCTM framework with varying parametrization complexity
and order K of the Bernstein polynomial, denoted DCTM{S,SS,G}

K . C-indices
were calculated at the training cohort event time quantiles 25%, 50%, 75% and
100%, and IBS was integrated over time steps of size 0.01 from 0 to the largest
test set event time. All DCTMs and experiments were implemented in Pytorch,
unless indicated otherwise. The source code for the DCTM framework is avail-
able on GitHub at https://github.com/sinai-computational-pathology/DCTM.

4.1 Tabular data

We first compare our DCTMs to state-of-the-art methods (CPH model, random
survival forest [RSF], and DeepSurv) on tabular benchmark datasets. The GBSG

https://github.com/sinai-computational-pathology/DCTM
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Table 1. Test c-indices (CI, ↑) evaluated at different event time quantiles and
IBS (↓) for several models on three tabular datasets. DS=DeepSurv.

Metric CPH RSF DS DCTMS
1 DCTMS

10 DCTMSS
1 DCTMSS

10 DCTMG
1 DCTMG

10

g
bs

g CI

25 0.600 0.638 0.655 0.705 0.696 0.686 0.687 0.700 0.707
50 0.605 0.619 0.650 0.691 0.684 0.676 0.682 0.684 0.691
75 0.600 0.603 0.648 0.687 0.679 0.674 0.678 0.676 0.679
100 0.600 0.603 0.648 0.687 0.679 0.674 0.678 0.676 0.679

IBS 0.125 0.129 0.180 0.110 0.115 0.116 0.116 0.115 0.115

m
et

a
br

ic

CI

25 0.591 0.669 0.563 0.643 0.654 0.684 0.676 0.694 0.692
50 0.601 0.605 0.567 0.648 0.652 0.659 0.645 0.666 0.653
75 0.594 0.566 0.550 0.631 0.634 0.633 0.616 0.634 0.615
100 0.589 0.545 0.548 0.629 0.631 0.620 0.576 0.615 0.605

IBS 0.215 0.251 0.203 0.227 0.226 0.220 0.229 0.224 0.230

su
pp

o
rt CI

25 0.569 0.642 0.540 0.586 0.603 0.602 0.619 0.602 0.612
50 0.575 0.621 0.520 0.605 0.612 0.611 0.610 0.613 0.616
75 0.577 0.601 0.517 0.609 0.614 0.614 0.611 0.616 0.616
100 0.571 0.588 0.515 0.610 0.614 0.615 0.610 0.616 0.610

IBS 0.251 0.273 0.304 0.253 0.243 0.235 0.235 0.236 0.231

dataset contains 686 breast cancer patients with 56% censoring and 7 features.
The METABRIC data contains 1980 breast cancer patients with 42% censoring
and 9 features. The SUPPORT dataset contains 9105 hospitalized adults, 32%
censoring and 14 features. We use the same train/test splits as in [13]. For
each dataset, explanatory variables were z-normalized using the training split,
while the time to event data was normalized in the range 0–1. Cox and RSF
models were trained using the survival and ranger packages in R, respectively.
For DeepSurv and DCTM, the encoding portion of the model consisted of a linear
layer followed by a ReLU non-linearity. The survival head consisted of a linear
layer projecting features to the risk score for DeepSurv, and a DCTM survival
head with different parametrizations using K = 1 or 10 bases. Models were
trained for 15 epochs with a learning rate of 0.001 using the L-BFGS optimizer.

Results are presented in Table 1. In terms of c-index, except for the two
earlier time points in the SUPPORT data, DCTMs outperform CPH, RSF and
DeepSurv on all other datasets and for all time points. For the GBSG data, the
most complex DCTMG

10 performs best, whereas the simpler DCTMG
1 and shift-

scale (K = 10) perform best on the METABRIC and SUPPORT data. In terms
of probabilistic predictions (IBS), DCTMs outperform the baseline methods on
the GBSG and SUPPORT data, while DeepSurv performs best on METABRIC.

4.2 Radiology data

The radiology data comprised 3346 volume CT scans of patients with head &
neck cancer from the open RADCURE cohort with curated disease-free survival
time [29]. 780 (23%) subjects had an event and the rest were censored. The
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Table 2. Cross-validation c-indices (CI, ↑) of the test set for the models evaluated
at different event time quantiles of the CT-image dataset, and IBS (↓). Values
are average±std (%). DS=DeepSurv, DH=DeepHit.

Metric DS DH DCTMS
1 DCTMS

10 DCTMSS
1 DCTMSS

10 DCTMG
1 DCTMG

10

r
a
d
cu

r
e

CI

25 66.2±1.2 73.0±1.1 75.0±0.7 74.8±0.9 74.2±0.8 74.8±0.9 74.4±0.6 74.2±0.4
50 65.8±1.1 72.0±1.0 73.4±0.7 73.3±0.7 72.9±0.7 73.3±0.9 72.9±0.6 72.8±0.5
75 65.8±1.1 72.0±1.0 73.4±0.7 73.3±0.7 72.9±0.7 73.2±0.9 72.9±0.6 72.8±0.5
100 65.8±1.1 50.8±21.7 73.4±0.7 73.3±0.7 73.0±0.6 73.0±1.0 73.0±0.6 72.7±0.5

IBS 13.2±0.1 16.7±0.0 10.7±0.2 10.2±0.5 10.5±0.2 9.9±0.3 10.3±0.3 9.7±0.3

planned target volumes (i.e. tumor ROIs as RTstructs) for radiotherapy were
also available, which were converted to binary masks. All CTs and tumor masks
were resampled to an isotropic voxel size of 3 × 3 × 3 mm. Of the cohort, 750
(22%) patients were held out for testing according to RADCURE splits, and the
remaining 2596 (78%) were randomly divided for 5-fold cross-validation. The
event times were normalized to range 0–1, and the CT images were clipped
to [−1000,+1000] HU and min-max normalized to 0–1. The tumor ROI masks
were added as a second image channel. A 3d ResNet34 backbone [7] was used
for feature extraction (size 512) of the image volumes, followed by a survival
head based on DeepSurv, DeepHit or variants of our DCTM. We used 3000
time thresholds in DeepHit. The DCTM variants were trained by minimizing
NLL, DeepSurv by minimizing the log partial-likelihood [13] and DeepHit by
minimizing cross entropy (CE) [19] (no ranking loss). For DeepSurv and DeepHit
we calculated a risk score (log cumulative hazard for DeepSurv and survival
probability for DeepHit) for each patient by including an additional trainable
linear layer in the model with image features as input and output size 1 for
DeepSurv, and 3000 for DeepHit. Models were trained for 20 epochs with a
learning rate of 0.001 using the SGD optimizer. The final results were calculated
as the average across the five cross-validation models, applied to the test set.

Results are shown in Table 2. The DCTM models outperform all competitors
at each quantile by a considerable margin. While the simplest DCTMS

1 achieves
the best discrimination performance, the IBS indicates that the most complex
DCTMG

10 produces the best probabilistic predictions.

4.3 Histopathology data

For the histopathology experiments we leveraged three cohorts from the TCGA
[28] dataset containing overall survival information and whole slide images:
BRCA—1023 breast cancer patients with 86% censoring, LUAD—55 lung ade-
nocarcinoma patients with 65% censoring, and UCEC—548 patients with uterine
corpus endometrial carcinoma with 83% censoring.

For the analysis of the digital slides we extracted features using the state-
of-the-art foundation model UNI [3]. The models then consisted of a gated MIL
attention model [12] to aggregate features over the slide and a survival head. We
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Table 3. Cross-validation c-indices (CI, ↑) for models evaluated at different
event time quantiles of three histopathology datasets, and IBS (↓). Values are
average±std (%). DH=DeepHit.

Metric DH [21] DCTMS
1 DCTMS

10 DCTMSS
1 DCTMSS

10 DCTMG
1 DCTMG

10

br
ca CI

25 68.9±9.1 70.5±10.7 66.4±6.0 70.0±9.4 73.3±0.9 74.2±7.4 70.3±11.2
50 64.2±8.2 69.0±8.3 65.6±9.9 67.8±7.7 68.7±3.7 71.0±5.0 66.6±9.5
75 63.3±8.1 67.1±7.5 64.6±7.8 66.6±8.8 67.6±4.0 69.7±6.0 64.7±7.8
100 62.5±7.5 66.9±6.4 64.3±6.9 65.3±5.3 66.0±6.0 67.5±6.3 63.2±8.7

IBS 22.2±4.2 10.8±0.6 10.0±1.7 9.3±1.1 9.7±2.8 9.5±1.4 9.6±1.3

lu
a
d CI

25 64.5±7.7 65.4±6.9 62.2±3.8 61.1±7.3 62.9±6.6 60.7±8.1 61.2±5.9
50 62.3±8.0 62.2±7.9 61.2±5.9 60.5±4.1 60.9±7.3 59.0±5.2 60.1±5.3
75 61.1±6.1 61.8±5.0 61.0±5.2 61.0±5.2 61.1±5.0 59.0±6.5 59.4±5.3
100 62.1±5.0 61.7±4.7 61.0±4.5 58.7±8.0 60.0±5.9 57.6±7.1 57.4±5.0

IBS 29.9±9.1 19.2±3.1 17.1±4.9 14.9±3.5 16.1±4.3 15.4±4.4 16.6±4.4

u
ce

c CI

25 64.5±5.1 66.0±6.1 65.3±3.3 68.6±3.2 69.9±6.0 68.0±9.1 68.2±7.0
50 62.6±4.9 65.8±4.6 65.8±8.7 67.3±4.7 68.3±6.2 68.4±6.5 67.1±5.1
75 64.5±8.1 67.0±5.5 66.8±7.5 67.7±4.7 67.9±5.5 68.3±8.3 67.7±5.7
100 66.9±7.9 67.1±5.6 66.9±7.7 67.7±6.7 68.2±6.1 68.1±9.1 67.3±8.5

IBS 21.0±8.9 9.4±2.6 9.6±4.2 8.4±2.5 8.7±3.1 8.5±2.6 8.8±2.9

compared our proposed DCTM head with the DeepHit model as implemented
in a recent benchmark study [21]. We omitted DeepSurv as it is incompatible
with batch sizes of one as used in histopathology experiments due to size. The
models were trained using splits from [21] in a 5-fold cross-validation scheme for
100 epochs following a cosine annealing learning rate schedule with maximum
learning rate of 0.0002 using the AdamW optimizer.

Results are shown in Table 3. For the BRCA and UCEC data, the general
DCTM (K = 1) or shift-scale DCTM (K = 10) perform best in terms of c-index.
For the LUAD dataset, the simplest shift DCTM (K = 1) performs best at the
25th and 75th percentile in terms of c-index, while DeepHit performs best for the
50th and 100th percentile. In terms of IBS, the shift-scale DCTM with K = 1
performs best on all three datasets.

5 Discussion and conclusions

We have proposed DCTMs for survival analysis and demonstrated their effec-
tiveness on a wide range of datasets featuring both tabular and imaging data, as
well as various neural network architectures, feature extractors and foundation
models. In terms of time-dependent c-index, DCTMs outperform state-of-the-
art models (DeepSurv, DeepHit, RSF, and CPH) across most data modalities
and perform on par otherwise. Our ablations show that the various degrees of
flexibility of DCTMs aids in trading off flexibility and prediction performance.
In particular, our results on the radiology data indicate that lower order Bern-
stein polynomials (K = 1) yield better discrimination but lower probabilistic
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prediction performance than higher order (K = 10). Furthermore, the most flex-
ible model, DCTMG, does not typically perform best in terms of discrimination.
The type of explanatory data and their relationship with the survival informa-
tion likely govern the optimal DCTM complexity. In practice, this complexity
can be chosen based on a validation split or cross-validation and thereby re-
duce the risk of overfitting. Lastly, our parameterization of the NLL in terms of
Bernstein polynomials and the sigmoid CDF yielded more stable training curves
- a common problem when optimizing the partial likelihood (e.g. DeepSurv) -
and avoids introducing bias as in CE losses [31] (e.g. DeepHit). Using the time-
dependent c-index for evaluation is necessary due to the non-linear nature of
some of the DCTMs and allows a more fine-grained view on model performance.

Taken together, DCTM for survival analysis have been shown to be a ver-
satile neural network survival head which can be combined with various input
data modalities, feature extraction methods and foundation models, and yield
prediction and discrimination performance superior or at least similar to state-
of-the-art deep learning methods for survival outcomes.
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