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Abstract. Longitudinal prediction of infant brain MRIs is crucial for
individualized neurodevelopment tracking and disorder forecasting. How-
ever, existing methods, such as diffusion-based generative models, often
struggle to capture the complex spatiotemporal dynamics of develop-
ing brains, leading to unreliable predictions that lack subject-specific,
anatomically consistent growth patterns. To address this, we propose a
Flexibly Distilled 3D Rectified Flow (FDRF) framework, which
integrates anatomical constraints for dual-stream predictions of volu-
metric images and tissue maps along developmental trajectories. Our
framework features an age-conditioned feature fusion module for control-
lable prediction with targeted age appearances and employs anatomical
constraints derived from segmentation labels and high-frequency image
details to ensure subject-level spatiotemporal consistency. Additionally,
we introduce a flexible distillation of rectified flow, enabling a unified
one-step generative model for high-fidelity cross-time predictions while
preserving individualized anatomical details. Given 6-month MRIs and
tissue maps as the input, our model reliably predicts their spatiotem-
poral growths at 12 and 24 months, outperforming existing diffusion-
based baselines by relatively large margins. Our codes can be found at
https://github.com/ladderlab-xjtu/FDRF.

Keywords: Rectified Flow · Controllable Distillation · Longitudinal
Prediction · Infant Brain MRI.

1 Introduction

The early development of the infant brain is crucial for lifelong neurological
health and cognitive function [3,7]. It is a period of rapid structural and func-
tional changes that are fundamental for the establishment of normal neural net-
works and the acquisition of various skills. Understanding these normal develop-
ment patterns is of great clinical significance, particularly for the early detection
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and diagnosis of neurodevelopmental disorders such as autism spectrum disorder
(ASD) [11,2].

Thus, longitudinal prediction of infant brain MRIs along the development
trajectory is of great value for individualized neurodevelopment and associated
disorder forecasting. In this context, the emergence of diffusion models offers a
promising solution. In recent years, diffusion models have shown great potential
in medical image generation due to their ability to generate high-quality im-
ages with realistic details. These models progressively denoise a signal from pure
noise, capturing complex data distributions and generating high-fidelity sam-
ples. Key developments in diffusion models include Denoising Diffusion Proba-
bilistic Models (DDPM) [5], Denoising Diffusion Implicit Models (DDIM) [15],
Latent Diffusion Models (LDM) [12], and Flow Matching [8], each enhancing
sampling efficiency, computational complexity, and generalization performance.
These advancements in diffusion models have led to significant progress in med-
ical image generation, addressing challenges such as data scarcity and privacy
concerns. For instance, the SequenceMorph framework [17] provides an unsuper-
vised approach for motion tracking on cardiac image sequences, with potential
for extension to other medical imaging domains. The Treatment-aware Diffusion
Probabilistic Model [9] integrates treatment information to predict longitudinal
MRI and diffuse glioma growth, supporting personalized treatment planning.
The Sequence-Aware Diffusion Model (SADM) [18] leverages temporal depen-
dencies in longitudinal data for high-fidelity medical image generation, advancing
the field of longitudinal medical image analysis.

Despite these advances, existing diffusion-based methods for infant brain
MRI generation or prediction still face several key limitations. Specifically, they
struggle with age control in longitudinal generation, anatomical structure quality,
and sampling efficiency. In terms of age control during longitudinal generation,
existing methods lack flexibility in precisely controlling the generated images to
present age-specific spatiotemporal appearances.

Regarding the fidelity of generated images, the anatomical details are still
not satisfactory, especially at the subject level. The high-frequency details of
individualized anatomical structures are often limited, which hinders the reliable
quantification and prediction of brain development.

Moreover, many existing generation methods suffer from inefficient sampling
processes (e.g., DDPM [5], DDIM [15], and flow matching [8]). The long sampling
time hampers their real-world applications, for which efficiency and speed are
critical factors.

To address these challenges, we propose a Flexibly Distilled 3D Rectified
Flow (FDRF) framework, integrating anatomical constraints, for dual-stream
predictions of volumetric images and tissue maps along early neurodevelopmen-
tal trajectories (from 6 to 24 months of age). Our FDRF makes four primary
contributions. (1) We introduce a month-adaptive feature fusion module that
integrates age conditions into image structural features, enabling precise control
over the age of generated images and addressing the difficulty of predicting de-
velopmental images for specific months. (2) We develop a dual-stream generation
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architecture that concurrently predicts brain images and tissue maps, ensuring
better consistency and accuracy at the subject level in anatomical structures.
(3) We employ a rectified flow [10] training strategy followed by distillation, al-
lowing one-step sampling in inference and significantly improving the efficiency
compared to iterative diffusion-based methods such as DDPM, DDIM, and flow
matching. (4) We incorporate edge-based regularization and tissue segmenta-
tion loss as anatomical constraints into the distillation procedure, leading to
high-fidelity predictions that preserve individualized spatiotemporal details.

2 Methods

2.1 Preliminaries: Rectified Flow

Rectified Flow [10] is a method for solving the transport mapping problem,
which is an improvement over flow matching [8]. Specifically, for two distributions
z0 ∼ π0 and z1 ∼ π1 in Rd, the goal is to find a mapping T : Rd → Rd such that
when z0 ∼ π0, T (z0) ∼ π1. Diffusion models [5,15] address this type of transport
mapping problem by converting it into a continuous-time process governed by a
class of stochastic differential equations (SDE). However, this approach suffers
from long sampling times and instability issues.

To address these issues, rectified flow introduces an ordinary differential equa-
tion (ODE) model that transfers π0 to π1 via a straight line:

dzt = v(zt, t)dt, with zt = z0 + t(z1 − z0), t ∈ [0, 1], (1)

where v denotes the velocity vector field. In practice, rectified flow employs a
neural network vθ to estimate the velocity vector field. To obtain the parameter-
ized velocity vector field vθ, we need to solve the following straightforward least
squares regression problem:

min
θ

∫ 1

0

E ∥(z1 − z0)− vθ(zt, t)∥2 dt. (2)

Thus, the loss function for training the neural network is given by:

L(θ) = Ez0∼π0,z1∼π1
∥(z1 − z0)− vθ(zt, t)∥2 , (3)

where t ∼ U [0, 1]. By leveraging the optimized vθ as a path predictor, rectified
flow successfully links the two distributions through almost linear paths. The
forward Euler method enables rectified flow to achieve high-quality results from
the training data with minimal computational steps.

2.2 FDRF: Flexibly Distilled 3D Rectified Flow

In this section, we introduce the Flexibly Distilled 3D Rectified Flow (FDRF),
a novel pipeline designed to generate infant brain MRI and corresponding tis-
sue segmentation labels from 6 months to 12 and 24 months. Our approach
leverages a combination of structural and age features within a Rectified Flow
framework, enhanced by edge and segmentation losses during the distillation
phase, to achieve high-quality one-step sampling.
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Network Architecture FDRF synthesizes brain images along with the cor-
responding tissue segmentation maps for 12 or 24 months from their 6-month
counterparts. Specifically, for (x0,y0) ∈ π0 representing the MRI image and seg-
mentation label of a 6-month-old infant, and (x1,y1) ∈ π1 representing those of
infants aged 12 or 24 months, FDRF employs a velocity vector field U-Net [13]
equipped with a feature fusion module (FFM) to model deformation and segmen-
tation evolution from π0 to π1, as shown in Fig. 1. This design enables accurate
and efficient mapping of distributions without relying on classifier-free guidance
(CFG) [6] strategies, effectively capturing the essential characteristics of infant
brain MRI and segmentation labels across different ages.

Fig. 1. The overall framework of FDRF. (A) During training, the vector-valued U-Net
is optimized with t ∼ U [0, 1] , while in Flexible Distillation, t = 0 is used to enable
one-step sampling; (B) Given the age, 6-month-old brain MRI, and tissue labels, the
famework samples 12-month or 24-month-old brain MRI and tissue labels; (C) The
feature fusion module (FFM) integrates age features and structural features.

Loss Functions To optimize the velocity vector field network, we start by using
the standard Mean Squared Error (MSE) loss during the training phase. Given
that (x0, y0) ∼ π0, (x1, y1) ∼ π1, the MSE loss is defined as:

LMSE(θ) = E ∥(z1 − z0)− vθ(zt, t)∥2 , with t ∼ U [0, 1], (4)

where z0 = (x0,y0), z1 = (x1,y1) and zt = tz1+(1−t)z0. In addition to the MSE
loss, we introduce two specialized loss functions: Edge loss and Segmentation
loss. These loss functions are designed to enhance the network’s performance by
focusing on specific aspects of the velocity vector field. Before delving into the
details of these specialized loss functions, we define the predicted image x̂ and
the predicted segmentation mask ŷ as follows:

(x̂, ŷ) = (x0,y0) + vθ(x0,y0, 0). (5)
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Edge Loss This loss function focuses on preserving the structural details of
MRI images by penalizing differences in the gradient of the predicted and target
images.

Ledge(θ) = E ∥∆x1 −∆x̂∥2 , (6)

where ∆ denotes the Laplacian filtering operation.

Segmentation Loss This loss function ensures the accuracy of tissue segmentation
labels by comparing the generated and ground-truth segmentation masks using
a combination of Dice loss (Ldice) and cross-entropy loss (Lce). These losses are
widely used in the literature for evaluating segmentation performance [19,4,1].
The segmentation loss is formulated as follows:

Lseg(θ) = Ldice(y1, ŷ) + Lce(y1, ŷ). (7)

Flexible Distillation for One-Step Sampling During the training phase, we
exclusively utilize MSE loss function, as shown in Eq. 4. To further enhance the
efficiency of the velocity field and enable one-step sampling, we design a flexible
distillation process. This process leverages the inherent property of the rectified
flow framework, which promotes straight trajectories between distributions due
to its linear interpolation formulation (zt = z0+t(z1−z0)). This property allows
the velocity field vθ to directly approximate the displacement z1 − z0 at t = 0,
enabling one-step sampling without iterative ODE solving.

To achieve this, the flexible distillation process is designed with a specific loss
function that optimizes the velocity field at t = 0. The loss function is formulated
as follows:

L(θ) = E ∥(z1 − z0)− vθ(z0, 0)∥2︸ ︷︷ ︸
MSE at t=0

+λ1Ledge(θ) + λ2Lseg(θ), (8)

where z0 = (x0,y0) and λ1, λ2 is hyperparameters that balance the two losses.
Fixing t = 0, the distillation phase explicitly forces the network to internalize the
full deformation and segmentation dynamics into a single-step prediction. This
leverages the linearity of rectified flow paths to collapse the continuous-time
ODE into a direct mapping:

(x1,y1) = (x0,y0) + vθ(x0,y0, 0), (9)

where vθ(x0,y0, 0) predicts the displacement from π0 to π1. The edge loss (Ledge)
and segmentation loss (Lseg) ensure that high-frequency anatomical boundaries
and tissue labels remain sharp and consistent in the one-step output, compen-
sating for potential oversmoothing caused by distillation.

3 Experiments and Results

3.1 Datasets and Implementation

Dataset We employed longitudinal T1-weighted magnetic resonance imaging
(MRI) data and corresponding tissue segmentation labels from the Infant Brain
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Imaging Study (IBIS) dataset [14], a multi-center neurodevelopmental cohort
focusing on infants at high likelihood for autism spectrum disorder. The seg-
mentation labels were initially generated by iBEAT [16] and subsequently re-
fined by three radiologists. The dataset comprises paired scans from the same
subjects at 6 months and either 12 or 24 months of age, forming two distinct
longitudinal trajectories (6→12 months and 6→24 months). Each subject con-
tributes at least one paired time point, with some subjects contributing pairs for
both trajectories. This results in a total of 452 MRI-segmentation pairs (242 for
6→12 months, 210 for 6→24 months) from 284 individual subjects. The dataset
was split into training, validation, and test sets at a 75%, 5%, and 20% ratio,
respectively.

Implementation details The FDRF model processed input 3D images and la-
bels with a shape of (160, 192, 160). It underwent 400 epochs of training, followed
by 200 epochs of distillation. The training was performed on two NVIDIA RTX
3090 GPUs, utilizing a batch size of 1. The Adam optimizer was employed with
a learning rate of 1 × 10−5, and the loss function weights were set to λ1 = 0.7
and λ2 = 0.2. Notably, a unified model was trained for longitudinal predictions
of growth brains at 12 and 24 months of age, in terms of 6-month inputs.

3.2 Main Results

Comparison Methods In this study, we compared two versions of our meth-
ods, FDRF1 and FDRF2, with several state-of-the-art techniques. Specifically,
we included DDIM [15], which employs DDIM with a CFG [6] strategy using 50
sampling steps; RF (CFG), combining rectified flow [10] with CFG; RF (FFM),
incorporating rectified flow with the feature fusion module (FFM) instead of
CFG. FDRF1 builds on RF (FFM) by adding an edge loss function Ledge (Eq. 6)
during the distillation phase, while FDRF2 further enhances FDRF1 with an
additional segmentation loss function Lseg (Eq. 7) during the same phase. It is
important to highlight that the only method marked with an asterisk (∗) focuses
exclusively on generating MRI images from MRI inputs, specifically RF (FFM)∗,
without incorporating segmentation masks. Conversely, the other methods inte-
grate the joint generation of images and segmentation masks. The visual results
of these methods are presented in Fig. 2, where the superior performance of
FDRF2 can be clearly observed in terms of image quality and segmentation
accuracy.

Image Prediction Results The performance of the proposed methods, RF
(FFM), FDRF1, and FDRF2, was evaluated in terms of image quality at 12 and
24 months. As shown in Table 1, the results show that our methods consistently
outperformed the other methods in terms of the mean square error (MSE)
and the highest peak signal-to-noise ratio (PSNR) and the structural
similarity index measure (SSIM). For example, at the 12-month time point,
FDRF2 achieved an MSE of 0.0023, a PSNR of 26.5034, and an SSIM of 0.9384,
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Fig. 2. The upper part shows the brain MRI image and tissue segmentation of IBIS1048
generated at 12 months, while the lower part corresponds to those at 24 months.

which are the lowest MSE and the highest values of PSNR and SSIM among
all methods. Similarly, at the 24-month time point, FDRF2 achieved an MSE of
0.0027, a PSNR of 25.9495, and an SSIM of 0.9084, indicating superior perfor-
mance in generating higher-quality MRI images with fewer artifacts and better
structural preservation compared to the other methods. It should be noted that
the performance of RF (FFM) exceeds that of RF (FFM)∗ in all key metrics.
This observation underscores the importance of employing a joint image and seg-
mentation generation architecture, which simultaneously produces MRI images
and tissue segmentation labels. Such an architecture ensures better consistency
and accuracy in anatomical details, thereby enhancing the overall quality of the
generated images.

Beyond quality, our single-step sampling strategy offers substantial com-
putational efficiency. Our models achieved an average inference time of just
0.08 seconds per image in the 92-sample test set, a significant improvement
over DDIM(CFG)’s 50-step sampling, which required 30.88 seconds.

Tissue Prediction Results The tissue segmentation performance of the dif-
ferent methods at 12 and 24 months was evaluated using the Dice coefficient. As
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Table 1. Comparison of Model Performance at 12 and 24 Months.

Methods 12 Months 24 Months Sample
Time↓MSE↓ PSNR↑ SSIM↑ MSE↓ PSNR↑ SSIM↑

DDIM [15] 0.0030 25.2921 0.9149 0.0034 24.8439 0.8871 30.88 s
RF (CFG) [10] 0.0024 26.3310 0.9290 0.0030 25.5375 0.8991 0.48 s
RF (FFM)∗ 0.0042 24.1587 0.9214 0.0051 23.6301 0.8890 0.08 s
RF (FFM) (Ours) 0.0024 26.3415 0.9306 0.0029 25.6403 0.9020 0.08 s
FDRF1 (Ours) 0.0023 26.4785 0.9332 0.0029 25.6181 0.9051 0.08 s
FDRF2 (Ours) 0.0023 26.5034 0.9348 0.0027 25.9495 0.9084 0.08 s

Table 2. Dice coefficients for tissue segmentation generated by various methods at 12
and 24 months.

Methods 12 Months 24 Months

GM WM Average GM WM Average

DDIM [15] 0.7782 0.8077 0.7566 0.7447 0.7591 0.6966
RF (CFG) [10] 0.8128 0.8518 0.7938 0.7770 0.7969 0.7340
RF (FFM) (Ours) 0.8097 0.8599 0.7989 0.7725 0.8060 0.7370
FDRF1 (Ours) 0.8224 0.8608 0.8003 0.7836 0.8081 0.7405
FDRF2 (Ours) 0.8223 0.8596 0.8003 0.7846 0.8080 0.7418

shown in Table 2, our methods, RF (FFM), FDRF1 and FDRF2, demonstrated
superior performance in segmenting grey matter (GM) and white matter (WM)
tissues. This superior performance can be attributed to our joint training frame-
work, which effectively generates both high-quality images and accurate labels,
thereby providing robust anatomical supervision for image generation.

Ablation Analysis The experimental results highlight the effectiveness of our
methodological innovations. The edge loss function Ledge (Eq. 6) and segmen-
tation loss function Lseg (Eq. 7) during knowledge distillation enhance struc-
tural fidelity. Simultaneous MRI image and tissue segmentation label generation
ensures anatomical consistency. FDRF2, integrating these innovations, demon-
strates superior performance in preserving critical anatomical structures across
developmental timepoints. This joint image-segmentation generation approach
provides robust anatomical supervision, crucial for longitudinal infant brain de-
velopment studies.

4 Conclusion

Our proposed Flexibly Distilled 3D Rectified Flow (FDRF) method effectively
addresses the challenge of longitudinal MRI image synthesis for infant brains,
achieving high-quality image generation while preserving anatomical structures.
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The feature fusion module ensures robust performance across different develop-
mental timepoints. The method’s accuracy and robustness, demonstrated through
the publicly available IBIS dataset, highlight its potential to advance neurode-
velopmental image synthesis and clinical applications. Future work will focus on
optimizing the FDRF pipeline and exploring its broader applications in medical
imaging. Our code will be released publicly in the near future.
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