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Abstract. Federated learning (FL) has become a crucial technique for
medical imaging analysis, enabling multiple institutions to train machine
learning models while preserving patient privacy collaboratively. How-
ever, recent research has uncovered the vulnerability of shared gradients
in FL, which can be exploited through the gradient inversion attack
(GIA) to reconstruct private medical images. While existing methods
show promise in generic image tasks, their application to high-resolution
medical images remains underexplored and ineffective due to data com-
plexity. This paper introduces GradInvDiff, a novel GIA tailored for med-
ical FL scenarios. Unlike traditional methods that rely solely on gradient
guidance, our approach combines diffusion models with gradient match-
ing optimization to iteratively refine the inference process. By replacing
the standard random noise in the diffusion process with a direction de-
rived from the difference between the optimized and original means, we
inject a gradient-based condition into the noise to enhance image recon-
struction quality. This method enables high-quality, pixel-level recon-
struction of private medical images, even in the presence of large batch
sizes or gradient noise. Our experiments demonstrate that GradInvD-
iff outperforms existing state-of-the-art gradient inversion methods and
shows better accuracy and visibility when attacking medical FL models.
We hope that this paper can raise public awareness of privacy leakage
risks when using medical FL.

Keywords: Federated Learning - Gradient Inversion Attack - Diffusion
Models.
1 Introduction

Federated learning (FL) has emerged as a pivotal paradigm for decentralized
medical imaging analysis, enabling collaborative model training across insti-
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https://github.com/R00TSEN1650/GradInvDiff

2 Z. Wang et al.

EE

Pre-trained
Denoising Unet

Model Shared
gradients

Optimizer

—

Fig. 1. Overview of the proposed Diffusion-based Gradient Inversion Architecture.

tutions while ostensibly preserving patient privacy through gradient exchange
rather than raw data sharing [6,19,20]. Its critical impact is evident in appli-
cations like multi-institutional tumor segmentation, X-ray classification, and
MRI reconstruction, which enhance diagnostic accuracy and protect patient
data [8,10,21]. Nevertheless, this privacy promise is fundamentally challenged
by the gradient inversion attack (GIA), where adversaries exploit shared gra-
dients as "Trojan horses" to reconstruct private medical images [15,27]. While
existing GIAs demonstrate risks in generic vision tasks, their ability to steal
medical images with high clinical validity in medical FL - whether they can
effectively reconstruct diagnostically meaningful information that preserves crit-
ical anatomical features and pathological characteristics - remains unverified.

Existing GIAs are primarily categorized into three approaches. Optimization-
based GIAs [12,29,31] iteratively optimize pixel values to match target gradients.
While these methods are conceptually simple, they face challenges when applied
to medical imaging due to the high dimensionality of such data, often leading
to blurred reconstructions that fail to preserve diagnostically critical features.
Analytic-based GIAs [4,11,30] require model modifications to access private data,
limiting their applicability in the common "honest-but-curious" setting where
model architecture is fixed. Generation-based GIAs leverage generative mod-
els as structural priors to constrain the solution space by learning from data
distributions. These methods can be further classified based on their genera-
tive models. GAN-based GIAs [9,16,17] utilize adversarial training to achieve
semantic consistency during reconstruction; however, despite their effectiveness
in producing semantically similar images, they frequently introduce significant
spatial misalignments in reconstructed anatomical structures, undermining their
clinical utility [17]. Diffusion-based GIAs [13,24] leverage the prior knowledge of
image generation diffusion models. DGGI [24] uses diffusion outputs only for ini-
tialization, lacking iterative gradient-guided refinement. Conversely, GGDM [13]
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integrates gradient loss directly into sampling, which can cause manifold devia-
tion and degrade feature preservation [26].

To address the critical challenges of existing GIAs in medical FL, we propose
GradInvDiff, a diffusion-based framework that integrates gradient matching op-
timization with medical imaging generation, as depicted in Fig. 1. Our method
introduces two key innovations: (1) Adaptive Mean Optimization (AMO): A hy-
brid mean formulation, akin to classifier-free guidance, that dynamically adjusts
the gradient conditioning strength to constrain the sampling path towards the
data manifold. (2) Gradient-Aligned Noise Injection (GANI): A strategy that
replaces standard stochastic noise by projecting it onto the gradient-matching
direction, reducing sampling randomness and aligning the update with gradient
information.

To the best of our knowledge, GradInvDiff is the first diffusion-based gra-
dient inversion framework specifically designed for medical FL. Our main con-
tributions are threefold: (1) Diffusion-based Gradient Inversion Architec-
ture: We develop a novel framework that combines adaptive mean optimization
with time-variant gradient-diffusion blending. This approach iteratively refines
the diffusion sampling trajectory to better align with gradient-matching ob-
jectives, thereby improving the fidelity of reconstructed images. (2) Gradient-
Conditioned Sampling: We propose a gradient-aligned noise projection mech-
anism that projects the added noise during the diffusion process onto the gradi-
ent residual subspace. This allows the reverse diffusion process to better preserve
critical image details while ensuring gradient guidance is consistently integrated
throughout the generation process. (3) Clinical Validation: Comprehensive
evaluation across multiple imaging modalities demonstrates robust performance
under practical FL settings, including large-batch training and gradient noise,
with significant improvements in preserving pathological features compared to
existing methods.

2 Method

2.1 Threat Model

Attacker’s Knowledge and Capabilities In our threat model, the adver-
sary operates as an honest-but-curious server with access to FL model param-
eters and shared gradients. While capable of storing and processing client up-
dates, the adversary cannot modify the learning protocol or global parameters.
The attack pipeline combines two key capabilities: robust label inference via
RLU [5], which ensures effective label reconstruction under practical FL con-
straints, and anatomical prior integration through modality-specific diffusion
models pre-trained on public medical imaging data. Fig. 1. illustrates the com-
plete implementation workflow.

Attacker’s Objective Given an FL model fy with parameters W for medical
image classification and batch-averaged gradients g computed from a private
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batch of images = and labels y, the attacker seeks to reconstruct private images
&* € REXHXWXC 1y solving the following optimization problem:

" = argminD (g,9), (1)

where § = % Z?zl Vw L(fw(&;), ;) represents the dummy gradients computed
from the reconstructed images &, with labels § inferred using RLU [5]. Following
state-of-the-art methods [13], we adopt negative cosine similarity as the gradient
matching loss D(, -):
{91,92)
D(g1,92) =1 — 7. (2)
llg1llllg2

2.2 Preliminary: Diffusion Model

Our generative framework leverages a Denoising Diffusion Probabilistic Model
(DDPM) [14] trained on publicly available medical image datasets. The diffu-
sion process decouples image generation into two distinct phases—deterministic
denoising and stochastic noise injection—thus enabling high-fidelity synthesis
through controlled corruption reversal.

In the forward process, clean images are gradually degraded over T iterative
steps by progressively adding Gaussian noise according to a predefined schedule
{B¢}E_,. This results in a sequence of images {x;}._, with increasing levels of

noise:
2y =1=Br 21+ Bi-e, e~N(,I). (3)

Thus, the original image x( is systematically transformed into pure Gaussian
noise xr, allowing the model to learn an effective inversion of this degradation.

In the reverse process, starting from xr ~ N(0,I), the model iteratively
reconstructs the original image by refining the noise. The sampling process of
the DDPM is illustrated in Fig. 2(a). At each timestep, it computes a denoised
mean pp(xs,t) conditioned on the current noisy image x;, and combines it with
a controlled noise component via Xg(xy,t):

Ti—1 :ue(xtat)+29(xtat)'ea GNN(O7I) (4)

This dual mechanism not only recovers the underlying image structure but also
preserves critical anatomical details, making DDPMs particularly well-suited for
high-fidelity medical image reconstruction.

2.3 Gradient Inversion with Diffusion Model

To effectively combine GIA and diffusion models, it is necessary to treat the
gradient as a condition for the diffusion model. Existing methods like GGDM [13]
adopt a classifier guidance approach [7] by computing virtual gradients through
the FL model and labels, then incorporating gradient similarity guidance into
the reverse process. As illustrated in Fig. 2(b), GGDM’s sampling formula is:

2oy = po(xe,t) + o(ae, t) (vxevzt|;9’||g;|| +e>, e~N(©0,1), (5)
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Fig. 2. Reverse diffusion sampling paths of DDPM, GGDM, and GradInvDiff

where v serves as a constant guidance scale. However, this fixed-scale guid-
ance can lead to manifold deviation [26] during the optimization process, as
the gradient constraints pull the reconstruction away from the data distribution
learned by the diffusion model. To overcome this limitation, we introduce a more
flexible approach by dynamically adjusting the gradient conditioning through
time-dependent parameters. Our framework incorporates two key mechanisms:
Adaptive Mean Optimization and Gradient-Aligned Noise Injection, which bet-
ter align the reconstruction process with the data manifold.

Adaptive Mean Optimization Unlike GGDM, we optimize the predicted
mean pg directly through gradient matching. For each zy, we perform K op-
timization steps with learning rate 1 to minimize the gradient matching loss
D defined in Eq. 2. The optimized mean u; is selected as the iteration achiev-
ing minimal D. Subsequently, we blend p; with the original pg using a time-
dependent schedule {v;}7_;:

=i + (1= v)po(ze, t). (6)

The blending schedule prioritizes gradient guidance in high-frequency stages
(near T') for rapid contour formation, while gradually reducing its influence in
low-frequency stages (near 0) to preserve anatomical details. We use a linear
decay to balance contour formation and detail preservation effectively. At high-
frequency stages, the gradient influence is maximized (yr = 1), and it linearly
decays to 0 in low-frequency stages, ensuring smooth transitions without unnec-
essary complexity.

Gradient-Aligned Noise Injection We introduce a noise projection mech-
anism to preserve gradient-matching information during stochastic sampling.
The adjusted noise injection projects random noise onto the gradient residual

subspace:
(e, Ap)

i — poll3
This projection minimizes interference between gradient alignment and stochas-
tic sampling. When noise is orthogonal to the gradient residual direction (Ap),

(i —no), €~ N(0,I). (7)

€proj =
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Ground Truth Reconstruction Results
DLG[9] iDLG[10] IG[11] GGDM[16]  GradInvDiff
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Fig. 3. Qualitative Comparisons of Image Reconstruction Across GIAs

the projected noise component becomes zero, effectively mitigating manifold de-
viation. As visualized in Fig. 2(c), this dual mechanism ensures gradient fidelity
while maintaining the diffusion model’s anatomical prior. The complete Grad-
InvDiff sampling integrates both components:

e =y py + (L =v) - po(we,t) + Xo(we,t) - €proj - (8)

Blended Mean Gradient-Aligned Noise

3 Experiments and Results

Implementation Details: We validate our method using two commonly used
classification models in medical FL: LeNet7 and ResNetl8, along with three
medical image datasets: ChestX-ray8 [22] (resized to 224 x 224), Acevedo-20 [1]
(resized to 64 x 64), and LiTS [2] (sliced into 64 x 64 2D images along sagittal,
coronal, and axial planes), which have been preprocessed in the MedMNIST [25]
dataset. The diffusion model is implemented using the iDDPM framework [18§],
with Gaussian initialization and an initial learning rate of 0.0001. For mean opti-
mization, we configure 5 iterations with n = 0.01 using the Adam optimizer. All
experiments are conducted on dual NVIDIA 3090 GPUs (48GB total memory).

Baseline Methods and Evaluation Metrics: Our baseline methods include
DLG [31], iDLG [29], IG [12], and GGDM [13], which also utilizes a pre-trained
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Table 1. Experimental Results for GIAs on Different Networks

Dataset and Network
Acevedo-20[1] ChestX-ray8[22] LiTS|[2]
LeNet ResNet LeNet ResNet LeNet ResNet

PSNR 11.5 8.78 8.74 8.61 10.3  9.26
DLGI31] SSIM 0.0641 0.192 0.0119 0.0214 0.0961 0.0787
LPIPS 0.698 0.397 1.37 1.31  0.987 0.974

PSNR 11.0 11.2 10.9 8.84 1294 121
iDLGI29] SSIM 0.0967 0.479 0.0246 0.0225 0.203 0.245
LPIPS 0.658 0.216 1.32 1.29  0.809 0.678

PSNR 189 11.5 20.2 15.7 18.7 142
IG[12] SSIM  0.627 0.449 0.784 0.264 0.464 0.382
LPIPS 0.148 0.315 0.583 0.797 0.373 0.655

PSNR 194 144 20.1 16.8 19.2 151
GGDM][13] SSIM  0.648 0.539 0.791 0.487 0.645 0.426
LPIPS 0.128 0.238 0.445 0.589 0.270 0.599

PSNR 20.7 17.8 21.3 16.4 23.6  20.7
GradInvDiff(Ours) SSIM 0.633 0.578 0.716 0.471 0.816 0.711
LPIPS 0.107 0.185 0.164 0.249 0.107 0.298

Method Metric

diffusion model similar to our approach. To assess the quality of the privacy
information stolen via GIA, we adopted the following metrics: Peak Signal-to-
Noise Ratio (PSNR 1); Structural Similarity Index Measure (SSIM 1) [28]; and
Learned Perceptual Image Patch Similarity (LPIPS |) [23], which computes
similarity between target and reconstructed images using a neural network.

Results and Discussion: Fig. 3. visually demonstrates the superiority of Grad-
InvDiff over existing baselines. Optimization-based methods (DLG, iDLG, IG)
produce reconstructions plagued by noise artifacts and structural blurring, a
direct consequence of unconstrained pixel-space optimization. While GGDM
achieves partial improvement through the use of a diffusion prior, it still intro-
duces noticeable perceptual distortions and fails to recover diagnostically critical
details. GradInvDiff overcomes these limitations via two synergistic mechanisms:
(1) AMO progressively aligns medical structures with gradient constraints while
preserving anatomical coherence through time-variant blending, and (2) GANI
replaces stochastic noise with deterministic updates to preserve fine textures.
Together, these innovations enable the recovery of diagnostically critical, high-
frequency details that are consistently lost by other methods.

As shown in Table 1, GradInvDiff demonstrates superior performance in
PSNR, SSIM, and LPIPS across the Acevedo-20, ChestX-ray8, and LiTS datasets.
Specifically, the results for the LiTS dataset are derived by averaging the 2D
results from the sagittal, coronal, and axial planes. GradlnvDiff advantage is
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Table 2. Ablation Study of GradInvDiff on the Acevedo-20 Data.

Method ‘ LeNet ‘ ResNet
Ablation  Gradient Noise Batchsize ‘PSNR SSIM LPIPS‘PSNR SSIM LPIPS
- X 1 20.7 0.633 0.107 | 17.8 0.578 0.185
w/o AMO X 1 14.3 0.443 0.324 | 11.3 0.321 0.288
w/o GANI X 1 16.5 0.513 0.227 | 12.6 0.472 0.256
- Ve 1 19.6 0.602 0.123 | 16.9 0.523 0.196
- X 4 18.5 0.582 0.191 | 15.0 0.499 0.185

8 16.7 0.524 0.248 | 12.9 0.390 0.249

"w/o AMO": the variant without Adaptive Mean Optimization.
"w/o GANI": the variant without Gradient-Aligned Noise Injection.

X

particularly pronounced in the LPIPS metric, underscoring its enhanced capa-
bility for preserving perceptual details. This deliberate focus on visual fidelity
naturally results in a slight compromise on pixel-level distortion metrics, aligning
with the established perception-distortion trade-off [3].

Ablation Study As shown in Table 2, the ablation studies confirm the critical
role of each proposed component. Removing Adaptive Mean Optimization (w/o
AMO) leads to severe performance degradation across all metrics, underscor-
ing its importance in gradient-guided alignment. Similarly, disabling Gradient-
Aligned Noise Injection (w/o GANI) significantly reduces reconstruction fidelity,
highlighting its necessity for preserving anatomical consistency. Under additive
Gaussian gradient noise A/(0,0.01%), GradInvDiff incurs only a marginal per-
formance drop, demonstrating strong robustness to such perturbations. Further-
more, the method maintains stable reconstruction quality across increasing batch
sizes (B = 4 or 8), proving practical applicability for real-world FL scenarios.
These results validate the complementary nature of the two components and the
framework’s adaptability to common FL constraints.

4 Conclusion

In this paper, we present a novel gradient inversion attack method, GradInvDiff,
designed for reconstructing high-resolution medical images in federated learning.
By combining diffusion models with gradient-matching mechanisms, we signifi-
cantly improve image reconstruction quality, overcoming challenges such as large
batch sizes and gradient noise. Experimental results demonstrate that Gradln-
vDiff outperforms existing methods in medical federated learning scenarios, en-
abling high-quality private image reconstruction. Through this research, we aim
to raise awareness of the potential privacy leakage risks in medical federated
learning and encourage more attention to security concerns in this field.
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