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Abstract. Accurate segmentation of Langerhans cells (LCs) in corneal
confocal microscopy (CCM) images is crucial for diagnosing and moni-
toring various ocular and systemic diseases. However, existing segmenta-
tion methods often struggle with the misidentification of activated LCs
and inaccurate boundary delineation due to their complex morpholog-
ical features and background noise. In this paper, we propose a novel
segmentation framework, MorphoBoost, which integrates morphology-
driven data augmentation and boundary optimization loss to address
these challenges. MorphoBoost employs a “localization before segmen-
tation” strategy, enhancing the diversity of activated LCs via spatial
and appearance transformations, and refining segmentation boundaries
through pixel-level and image-level optimizations. Our methods achieve
state-of-the-art performance in segmenting both LCs types, especially
activated ones. It establishes a new benchmark with a 17.10% increase
in the Dice coefficient and a 5.71 decrease in modified Hausdorff distance
over previous methods. This is bolstered by validation on clinical data.

Keywords: Morphology-driven augmentation - Langerhans cell segmen-
tation - Dilation mask.

1 Introduction

Langerhans cells (LCs) are antigen-presenting cells primarily responsible for
immune surveillance and regulation. They exhibit two states: an oval-shaped
non-activated state and a curved-shaped activated state [11]. The morphologi-
cal characteristics of the LCs such as maturity, density, size [5,12,13, 15,6, 22],
are closely related to many ocular or systemic diseases. In clinical practice, LCs
images acquired by corneal confocal microscopy (CCM), are commonly used to
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Fig. 1. Typical LCs segmentation issues in CCM images. Top row: misidentification of
activated LCs; Bottom row: inaccurate boundary delineation. The automated results
were obtained by two recent methods (SetuSeg [17] and DualStream [20]). Blue: non-
activated LCs; Red: activated LCs; Green: undersegmentation; Pink: oversegmentation.

assist ophthalmologists with rich pathological information, for studying disease-
related alternations. Manual annotation of LCs is able to support the quantita-
tive analysis, however, it is time-consuming and subjective. Moreover, the inter-
and intra-observer variations introduced by manual labeling greatly diminish the
accuracy of quantitative assessment of LCs [24]. Therefore, a fully automated
and accurate LCs segmentation method is essentially needed.

Many studies [17,20, 19, 2, 1] have been conducted to automatically segment
the LCs. Early works mainly focus on designing manual feature descriptors,
such as Gaussian filtering [19] and morphological operations [2, 1] to obtain ge-
ometric features for better LCs extraction. However, these methods rely heavily
on low-level features and require parameter tuning by hand, and thus segmen-
tation performance is limited. Deep learning-based models have recently been
established to improve segmentation accuracy, by exploring high-level features
rather than relying on low-level ones. For example, Setu et al. [17] used Mask R-
CNN [10] to achieve joint optimization of detection and segmentation tasks. Wu
et al. [20] introduced a dual-stream network with target-guiding and semantic-
guiding modules to collaboratively optimize segmentation and detection tasks.

Although the above-mentioned deep learning methods have achieved promis-
ing segmentation performances, they still struggle with the misidentification of
activated LCs and inaccurate boundary delineation. For example, as shown in the
top row of Fig. 1, activated LCs are often falsely identified as corneal nerves [4].
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Fig. 2. The proposed method comprises three core components: MD-Aug, DG-Loc,
and BO-Loss. Initially, data is augmented using MD-Aug to enhance diversity. The
augmented data is then processed through DG-Loc to generate input data for the
segmentation model. This input data is fed back into the model for fine-tuning, with a
BO-Loss incorporated to enhance segmentation accuracy.

Additionally, many methods [17,20] fail to preserve accurate boundaries, espe-
cially in low-quality CCM images, as shown in the bottom row of Fig. 1.

Inspired by [17, 20], we propose a morphology-driven boundary enhancement
model named MorphoBoost that follows the “localization before segmentation”
approach. In this framework, we design a morphology-driven data augmentation
module and a boundary optimization loss to address the challenges of misiden-
tification of activated LCs and inaccurate boundary delineation. The main con-
tributions are summarized as follows:

(1) We propose a novel LCs segmentation method, MorphoBoost, which fol-
lows a “localization before segmentation” approach and integrates morphology-
driven data augmentation and boundary optimization loss to address challenges
related to misidentification and inaccurate boundary delineation.

(2) We design a Morphology-Driven Data Augmentation Module to enhance
the diversity of activated LCs through spatial and appearance transformations.
We also incorporate a Boundary Optimization Loss that integrates pixel-level
and image-level components to refine segmentation boundaries.

(3) Our method sets a new benchmark in segmenting LCs, particularly acti-
vated ones, showcasing a 17.10% boost in the Dice coefficient and a 5.71 reduction
in modified Hausdorff distance over prior techniques. Its efficacy is substantiated
with clinical data validation.

2 Methods

2.1 Morphology-Driven Data Augmentation Module (MD-Aug)

The highly irregular morphologies of activated cells and their structural sim-
ilarity to corneal nerves pose significant challenges for model learning. These
challenges make it more difficult for models to accurately learn the features of
activated LCs compared to non-activated ones. To enhance the model’s ability
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to identify activated LCs, we propose a Morphology-Driven Data Augmentation
Module to augment the morphological diversity of activated cells. This module
comprises two key components: spatial transformations and appearance trans-
formations, both designed to comprehensively augment the feature diversity of
activated LCs.

SPeHSD

original image rotation warping

Fig. 3. Illustration of spatial transformations, including positional rotation and mor-
phological warping.

For spatial transformations, we performed operations such as rotation and
warping. Fig. 3 shows the results of the spatial transformations. The Shi-Tomasi
corner detection algorithm [18] is utilized to identify critical locations, such as
branch points and tips of the dendrites of LCs, which serve as control points
for subsequent morphological transformations. Inspired by the Moving Least
Squares (MLS) [14], we design a new approach to adjust the position and mor-
phology of activated LCs. Specifically, we define control points P = {p;} ,,
where p; represents the i-th detected corner. Target control points are then de-
fined based on desired morphological changes, denoted as {g;}?_,. For any point
w in the image, its transformed position T'(u) is calculated by minimizing the
following weighted error:

n

1
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i=1

The formula (2) enables local deformation of these cells by emphasizing con-
tributions from points near control points, generating diverse synthetic images.
This enhances the model’s ability to capture detailed structures, increasing data
diversity.

To preserve the overall morphology of activated LCs, regularization con-
straints are introduced to prevent excessive distortion during deformation. This
ensures that the deformation remains as natural as possible within local regions
and maintains the biological plausibility of the cells’ morphology. The specific
formula is as follows:

R=ZQMWM—AZTMwO 2)

uc? veS?

Here, (2 represents the set of all points in the image, and T'(u) denotes the trans-
formed position of point u. The term ﬁ > ven |T(v) —v| calculates the average
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deformation magnitude across all points in the image. This regularization term
works by comparing the local deformation magnitude |T'(u) — u| to the global
average deformation magnitude. It ensures that local deformations are consis-
tent with the overall deformation pattern, thereby maintaining the naturalness
of the deformation while capturing the necessary structural details.

For appearance transformation, we apply a range of data augmentations,
including color jittering, Gaussian noise, Gaussian blur, hue and saturation ad-
justments, random brightness and contrast modifications, and random flipping.
These augmentations complement the spatial transformations by introducing
variability in the visual appearance of the LCs, further enhancing the diversity
of the activated LCs.

2.2 Dilation-Guided Localization Module (DG-Loc)

To enhance the efficiency and accuracy of segmenting L.Cs, we propose a Dilation-
Guided Localization Module (DG-Loc) that dynamically generates a region of
interest (ROI) image from initial segmentation results. This module reduces
the image area processed by the segmentation network, mitigates background
noise interference, and allows the model to focus on the complex morphological
features of LCs.

ROI Image Generation. During model training, the DG-Loc retains N
(N = 4) weight snapshots and employs ensemble learning to ensure the integrity
of detected LCs within the image. This process generates a dilation mask M,
which guides the creation of the ROI. A dynamic dilation kernel, whose size is
adjusted through Gaussian sampling, is applied to the dilation mask M. This
kernel is then multiplied with the original image I to obtain the ROI image Iro;.
This step effectively isolates the target regions within the image.

Concurrently, the output from the final epoch of the model is concatenated
with Igos in the channel dimension to form the enhanced input image I’ to ob-
tain richer context. The enhanced ROI image I’ is then fed back into the model
for fine-tuning to achieve the final segmentation outcome. By dynamically gen-
erating the dilation mask and enhancing the ROI image with additional feature
map information, the DG-Loc improves the model’s ability to accurately segment
LCs, even in the presence of complex morphological features and background
noise.

2.3 Boundary Optimization Loss (BO-Loss)

The complex morphology and ambiguous edges of LCs present significant chal-
lenges for accurately delineating segmentation boundaries. To enhance boundary
precision and completeness, we propose a boundary optimization loss (Lpo) that
integrates two components: a pixel-level loss and an image-level loss.

The pixel-level loss (Lpixel level) aligns segmentation boundaries with image
edges by penalizing differences in segmentation predictions between adjacent
pixels. It uses a pairwise potential function with a weighting factor w;; that
depends on the intensity differences between neighboring pixels ¢ and j:
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Lpixel_level = Z Wij - |yz - y]‘ (3)
(i.5)eN

where w;; = exp (—%), I; and I; are the pixel values of pixels 7 and j,
i1
(v = 1) controls the smoothness, and N denotes the 4-neighborhood set.
The image-level loss (Eimageilevel) refines the predicted boundaries by mini-
mizing the difference between the predicted and true boundary maps, ensuring
that the segmentation output closely matches the actual edges:
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where Epreq,; is the pixel value in the predicted boundary map, and Eirye
is the pixel value in the true boundary map.
The total loss function is defined as:

Ltotal - ESeg + )\(‘Cpixel_level + Limage_level) (5)

where Lgc, is a linear combination of the cross-entropy loss and the Dice
loss, with equal weighting, and A is a hyperparameter that balances the impact
of the segmentation loss and the boundary optimization loss.

3 Experiments

3.1 Datasets and Implementation Details

The CORN-4S dataset includes 560 corneal confocal microscopy images cap-
tured using a Heidelberg Retina Tomography IIT (HRT-III) system. Each image
possesses a pixel resolution of 384 x 384, corresponding to a physical dimen-
sion of 400 x 400 um? in tissue sampling. The Clinical dataset comprises 467
corneal confocal microscopy images captured using the same device from dif-
ferent hospitals. All Annotations were performed by a senior ophthalmologists
using ITK-SNAP software to ensure accuracy. The experimental design incorpo-
rated five-fold cross-validation to ensure robustness of the evaluation. For model
optimization, we employed the AdamW optimizer using a batch size of 4 and
an initial learning rate of le-4. Training protocols included early stopping with
patience of 10 epochs monitored on the validation loss to prevent model over-
fitting, with a total of 300 training epochs. The MorphoBoost was implemented
using PyTorch 1.9.0, with all experiments conducted on an NVIDIA GeForce
RTX 3090 GPU platform.

3.2 Comparison with the State-of-the-Art

We thoroughly assessed MorphoBoost alongside eight leading methods: four gen-
eral medical segmentation approaches (CPFNet [8], CE-Net [9], TransUNet [3],
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Table 1. Evaluation results of comparison methods in model performance.

non-activated activated
Dice MHD Dice MHD
TransUNet 81.464+4.14 5.42+2.12 36.4145.33 21.42+7.19
CPFNet 84.324+2.34 4.01+2.53 45.87+3.24 18.78+8.23
CENet 82.25+3.56 4.78+1.87 43.36+£4.79 20.67+7.89
MedNeXt 85.78+£2.99 3.01+1.19 49.06+£2.91 15.3145.32
SetuSeg  84.814+4.65 3.89+1.45 46.88+4.62 18.02+5.34
DualStream 85.12+3.31 3.124+1.65 50.46+3.01 14.0544.19
JFSA 86.06+5.02 2.97+0.98 51.15+3.44 13.6946.36
SPG-Net 85.09+3.57 3.254+1.53 49.73+5.22 14.43+6.98
Proposed 87.88+2.77 1.95+0.56 68.25+4.11 7.98+5.18

Methods

o akORNR L AR E
DualStream SPG-Net Proposed

Fig. 4. Qualitative comparison between different methods. Under-segmentation is
shown in green, and over-segmentation is shown in red.

MedNeXt [16]) and four cell-specific segmentation methods (SetuSeg [17], JFSA [25],
DualStream [21], SPG-Net [23]). Evaluations were based on Dice coefficient
(Dice) and Modified Hausdorff Distance (MHD) [7] metrics. As evidenced by
Table 1, our method achieves state-of-the-art performance across all evaluation
metrics in both LCs types, demonstrating absolute improvements of 17.10%
and 5.71 respectively for activated LCs and 1.82% and 1.02 respectively for
non-activated LCs over the suboptimal method. Compared methods overlook
activated LCs, leading to lower recognition accuracy for activated LCs, whereas
differences are subtle for non-activated LCs. This suggests that activated LCs
features are harder to learn, underscoring the effectiveness of our MD-Aug. While
methods like DualStream, JFSA, and SPG-Net use boundary regularization to
enhance MHD for both LCs types, our MorphoBoost method shows a more sig-
nificant improvement, indicating its superior boundary delineation capability.
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Table 2. Ablation results of three key components on model performance.

non-activated activated

DG-Loc MD-Aug BO-Loss Dice NED Dice NHD

X X X 81.98+3.26 4.87£2.46 40.714+4.12 18.424+6.29

v X X 84.87+5.34 3.56+£3.53 51.93+6.14 15.78+7.23

v v X 85.45+3.26 2.64+2.37 62.184+4.39 12.66+5.89

v v v 87.88+2.77 1.95+0.56 68.25+4.11 7.984+5.18
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Fig. 5. Visualization of ablation results on activated LCs: (a) Impact of the dilation
kernel size on model performance, (b) Selection of optimal hyperparameter A, (¢) Gen-
eralization validation on real clinical datasets.

To demonstrate MorphoBoost’s superior performance, Fig. 4 compares vi-
sualizations from several baseline methods. Traditional approaches struggle to
accurately identify activated LCs and delineate LCs boundaries. In contrast,
MorphoBoost enhances recognition accuracy and boundary precision by diver-
sifying activated LCs morphology and employing boundary optimization loss,
thus establishing a more precise LCs segmentation model.

3.3 Ablation Study

We evaluated the impact of DG-Loc, MD-Aug, and BO-Loss on performance, as
detailed in Table 2. Models without these components struggled with segment-
ing LCs. DG-Loc enhanced performance by 11.22% in Dice and 2.64 in MHD
by generating ROI images that isolate LCs areas, improving the model’s focus
on LCs. MD-Aug increased accuracy by 10.25% in Dice and 3.12 in MHD by
diversifying the morphology of activated LCs. The addition of BO-Loss led to
peak performance, underscoring its critical role in precisely defining boundaries.

Additionally, we assessed the impact of the selection of dilation kernel on
model performance. As shown in Fig. 5(a), A small dilation kernel size can de-
prive the model of sufficient context for precise segmentation, whereas a larger
one might introduce excessive noise. A dilation size of 30 achieves the optimal
balance for accurate segmentation. We evaluated the impact of hyper-parameter
A on model performance by identifying the optimal value of A = 0.2 through grid
search, as depicted in Fig. 5(b). Our method’s robustness was further validated
on real clinical datasets from additional centers (Fig. 5(c)). Our approach outper-
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forms other state-of-the-art methods in identifying activated LCs, highlighting
its effectiveness and generalizability for practical clinical use.

4 Conclusion

This study introduces a novel morphology-driven boundary enhancement model
(MorphoBoost) for accurate LCs segmentation in CCM images. The proposed
method effectively addresses the challenges of misidentification of activated LCs
and inaccurate boundary delineation through a morphology-driven data aug-
mentation module and a boundary optimization loss. It achieves state-of-the-art
performance, marked by substantial improvements in segmentation accuracy, as
confirmed by clinical data validation.
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