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Abstract. Video depth estimation has been applied to various endoscopy
tasks, such as reconstruction, navigation, and surgery. Recently, many
methods focus on directly applying or adapting depth estimation founda-
tion models to endoscopy scenes. However, these methods do not consider
temporal information, leading to an inconsistent prediction. We propose
Endoscopic Depth Any Video (EndoDAV) to estimate spatially accurate
and temporally consistent endoscopic video depth, which significantly
expands the usability of depth estimation in downstream tasks. Specif-
ically, we parameter-efficiently finetune a video depth estimation foun-
dation model to endoscopy scenes, utilizing a self-supervised depth esti-
mation framework which simultaneously learns depth and camera pose.
Considering the distinct characteristics of endoscopic videos compared
to common videos, we further design a novel loss function and a depth
alignment inference strategy to enhance the temporal consistency. Exper-
iments on two public endoscopy datasets demonstrate that our method
presents superior performance in both spatial accuracy and temporal
consistency. Code is available at https://github.com/Zanue/EndoDAV.

Keywords: Video depth estimation · Foundation models · Self-supervised
learning.

1 Introduction

In the realm of minimally invasive procedures, endoscopy serves as a cornerstone
for diagnosis, treatment, and monitoring of gastrointestinal disorders. However,
the 2D nature of endoscopic video limits the ability to perceive spatial relation-
ships and depth, which are essential for precise navigation, lesion characteri-
zation, and therapeutic interventions. Therefore, accurate depth estimation in
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endoscopic videos has emerged as a critical area of research. Recent advance-
ments [2] [5] [12] [14] [16] [17] in computer vision and deep learning have enabled
the development of depth estimation techniques tailored to endoscopic imaging,
offering the potential to enhance clinical decision-making and procedural out-
comes. By reconstructing 3D spatial information from endoscopic videos, these
methods facilitate improved lesion size measurement, polyp detection, and tis-
sue deformation analysis. Furthermore, depth estimation plays a pivotal role in
robotic-assisted endoscopy, where accurate spatial awareness is crucial for au-
tonomous navigation and instrument manipulation.

Recently, foundation models in depth estimation have garnered significant at-
tention. Among these, Depth anything [19] [20], as a popular foundation model,
represents a novel paradigm that leverages large-scale datasets and advanced
neural network architectures to achieve robust and generalizable depth predic-
tion from single images. Some methods [2] [11] [15] focus on directly applying
or adapting this foundation models to endoscopy scenes. The work most closely
related to ours is EndoDAC [2]. It adapts a self-supervised pipeline to efficiently
finetune Depth Anything Model to endoscopic images. However, this method
lacks an effective usage of temporal information, thus being unusable when at-
tempting to acquire a consistent video depth prediction.

To address this issue, we parameter-efficiently finetune Video Depth Any-
thing [1] to endoscopy scenes. Video Depth Anything is based on Depth Any-
thing v2 [20] model and additionally trains a lightweight spatiotemporal head to
extend its temporal awareness capability. We apply a self-supervised framework
like EndoDAC, which simultaneously learns the depth and camera pose from the
input video. In endoscopic videos, the soft tissues usually present slow motion
and deformation. Many videos are captured by a camera navigating through the
intestinal tract. Distinct from the common videos typically with a single fixed
subject, endoscopic videos usually pose a greater challenge to the consistency
of video depth estimation. Considering the distinct characteristics of endoscopic
videos compared to common videos, we propose a projection loss and a depth
alignment inference strategy to enhance the temporal consistency. The projection
loss utilizes the predicted camera pose to project the predicted depth map from
a source view to its adjacent target view, thus enhancing the depth consistency
of two frames. At the inference stage, we carefully select previous key frames and
current frames to feed into the depth estimation model, and align adjacent depth
batches using the scale and shift over overlapped depth maps. Experiments on
two public endoscopy datasets demonstrate that our method presents superior
performance in both spatial accuracy and temporal consistency.

Our contributions are summarized as following:

1. We propose to estimate endoscopic video depth by parameter-efficiently
fine-tuning a powerful video depth estimation foundation model with a self-
supervised framework.

2. we propose a projection loss and a depth aligned inference strategy according
to the distinct characteristics of endoscopic videos to further enhance the
temporal consistency.
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3. Extensive experiments on two publicly available datasets demonstrate the
spatial accuracy and temporal consistency of our methods.

2 Method

2.1 Preliminaries

Single Image Depth Estimation Single Image Depth Estimation aims to pre-
dict relative or absolute depth values from one image. Recently, deep learning
based methods have revolutionized this area by effectively learning from large
scale depth datasets. Among these methods, Depth anything [19] [20] serves as
a strong foundation model and has been wildly adapted to various downstream
tasks. It utilizes a Dense Prediction Transformer(DPT) [10] structure and ap-
plies a powerful pre-trained vision model DINOv2 [8] as the backbone encoder.
With an effective teacher-student framework and large scale synthetic and real
data, Depth anything demonstrates astonishing generalization capability across
various types of images. Some methods [2] [15] have utilized Depth anything to
help single image depth estimation in endoscopy scenes. However, due to their
inherent flaws in model design and training strategies, methods based on Depth
anything cannot produce a consistent prediction on video depth estimation.
Video Depth Estimation Video Depth Estimation needs not only the ac-
curacy in each single image depth, but also the temporal consistency during
the whole video sequence. Recent video depth estimation foundation methods
mainly utilize the priors from diffusion model [4] [11] [18] or train from a single
image depth estimation foundation model [1] [6]. Among these methods, Video
Depth Anything is based on Depth Anything v2 model and additionally trains
a lightweight spatiotemporal head to extend its temporal awareness capability.
With a proper temporal information aware training strategy and an effective
long video inference strategy, Video Depth Anything achieves a satisfying video
depth estimation performance. Due to its superior performance in general im-
ages, we adapt this powerful model to endoscopy scenes and meticulously develop
a framework to efficiently finetune it.

2.2 EndoDAV

Framework We parameter-efficiently finetune Video Depth Anything [1] to en-
doscopy scenes by a self-supervised framework [2] [12]. As shown in Fig. 1, the
framework consists of two parts: Video Depth Network and Pose Network. The
Video Depth Network uses the structure of Video Depth Anything. To maxi-
mize the retention of Video Depth Anything model’s capability and reduce the
training parameters as much as possible, we select an efficient Low-Rank Adapta-
tion(LoRA) method named ‘Scaling the Subspace of Both left and right singular
vector(SSB)’ Lora [13] and add it to the feedforwad layers in attention blocks of
the depth model. This Parameter-Efficient Finetuning(PEFT) strategy enables
the finetuning process to be fast while minimizing resource consumption as much
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Fig. 1. Our framework consists of two parts: Video Depth Network and Pose Network.
We use SSB LoRA [13] to alternatively finetune the spatial and temporal blocks. During
training, a novel projection loss is introduced to enhance the temporal consistency.

as possible. The Pose Network is used to predict the intrinsic and extrinsic pa-
rameters of a camera. In this framework, pixels in a source image is projected to
a target view using the predicted depth map, camera intrinsic parameters and
relative extrinsic parameters between these two cameras. Then the same image
reconstruction loss as EndoDAC [2] and AF-SfMLearner [12] is added to force the
projected image to be as similar as possible with the target image. This process
effectively learns depth and camera pose from unlabeled videos simultaneously.
PEFT Strategy In order to preserve the model’s predictive capacity as much as
possible while reducing the number of training parameters, we only add LoRA
layers to the feedforwad layers in the model’s attention blocks. To lower the
training parameter requirements, we carefully select SSB LoRA [13] and apply it
to our model. With no extra trainable parameters, our method only needs 0.17%
of the total model parameters to be trainable. We find that with a meticulously
devised training strategy, it is sufficient for the Video Depth Network to learn
to predict an accurate results in endoscopy scenes.
Projection Loss In the self-supervised framework there are no extra constraints
along the temporal dimension. Therefore, directly adapting Video Depth Any-
thing Model to endoscopy scenes and finetuning it will result in the loss of
temporal consistency. We thus propose a projection loss to overcome this issue.
Given two adjacent frames Is and It, our framework predicts their corresponding
depth maps zs, zt, and the relative camera pose Ts→t. Then the previous depth
map zs is projected to the tth view by Ts→t. This process produces a new depth
map zs→t and its corresponding pixel coordinate us→t at the tth view:

us→t, zs→t = R(zs;Ts→t), (1)
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Fig. 2. Depth alignment strategy.

where R represents the projection operator. The pixel coordinate us→t is further
utilized to sample the depth map zt to get a resampled depth map ẑt:

ẑt = F(zt;us→t), (2)

where F represents bilinear interpolation operator. To filter the points derived
from pixels out of bounds and invalid depth values, we also calculate a valid
mask M . Our projection loss is then formulated as:

Lproj = M · |zs→t − ẑt|, (3)

Intuitively, this loss function acts as a consistency prior to force the depth maps
from adjacent frames to align with each other. In the context of endoscopy, the
movement of the camera is typically minimal, and the changes in the scene are
relatively gradual. As a result, the depth maps of adjacent frames are often
quite similar. This characteristic makes our loss function an effective constraint
for temporal consistency.
Depth Alignment during Inference Due to the GPU memory constraints,
in each step the depth model only receives a small video snippet as input at the
training stage. However, during the inference stage it is necessary for the depth
model to be equipped with the long video inference ability. General video depth
estimation methods [1] [4] have explored different strategies, but they are not
perfect in endoscopy scenes. In endoscopic videos, the soft tissues usually present
slow motion and deformation. Many videos are captured by a camera navigating
through the intestinal tract. Distinct from the common videos typically with a
single fixed subject, endoscopic videos usually pose a greater challenge to the
consistency of video depth estimation. Therefore, according to the endoscopy
characteristics, we carefully design a Depth Alignment strategy during Inference.
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We start from a simple but effective depth stitching strategy. Instead of directly
taking the adjacent video snippets as input, we set the two snippets with L
overlapped frames, which ensures the predictions to be more consistent. We
then select T frames in the previous video snippet and concatenate them with
the current snippet as input. Different from the selection strategy in Video Depth
Anything [1] which actually keeps the first frame of the video to stay in each
snippet input, we only select the frames from the previous snippet. Intuitively,
this strategy extends the receptive field of the video depth estimation network
along the temporal dimension, and also be flexible for a navigating video with a
long trajectory. Then we calculate the shift and scale on the overlapped depth
frames, and use them to align the next snippet. With enough overlapped frames,
the adjacent depth snippets are aligned accurately. Then the current snippet are
added to the result sequence, with the overlapped frames linearly combined with
the previous depth snippet. The whole process is shown in Fig. 2.

3 Experiments

3.1 Evaluation

SCARED Dataset. The SCARED Dataset (Surgical Scene and Endoscopic
Anatomy Recognition Dataset) is a pioneering resource in the field of surgical
data science and medical imaging, providing a realistic and controlled environ-
ment for surgical simulation and analysis. The dataset comprises 35 endoscopic
videos captured using a da Vinci Xi endoscope, totaling 22,950 frames of high-
resolution imagery. Its annotations includes ground truth depth maps generated
using a projector, as well as ground truth camera poses and intrinsic parameters.
To evaluate video depth predictions, the SCARED dataset is split into 24, 3, and
8 video sequences for the training, validation and test sets, respectively.
Hamlyn Dataset. The Hamlyn Dataset is a widely recognized and valuable
resource in the field of minimally invasive surgery, particularly for laparoscopic
and endoscopic imaging research. It consists of a diverse collection of in vivo sur-
gical videos captured during various real-world procedures. The dataset includes
laparoscopic and endoscopic video sequences recorded from different anatomi-
cal regions, offering a realistic representation of the complexities encountered in
clinical practice, such as tissue deformation, occlusions, and dynamic lighting
conditions. We use the whole 21 video sequences for validation.
Implementation Details. Our framework is implemented with PyTorch [9] on
NVIDIA RTX 3090 GPU. We apply AdamW [7] optimizer to train our framework
with initial learning rates of 1e − 4. Training augmentations is the same as
EndoDAC [2]. At the training stage we set the input sequence to be 16, and
train for 20 epochs. For comparison fairness, we use the ViT-small backbone [3]
for all the methods. For depth alignment, we use a slide window size 32 to process
the input video. Frames in each window consist of T = 2 keyframes from the
previous video snippet and 30 frames in the current video snippet, where the
first L = 8 frames are the overlapped frames.
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Table 1. Quantitative depth comparison on SCARED dataset. The best results are
in bold. "Total." and "Train." refer to the total and trainable parameters utilized in
Video Depth Network. Note that since Hamlyn dataset does not provide the camera
pose annotations, we do not evaluate the TAE metric on it.

Method Year Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE log ↓ δ ↑ TAE↓ Total.(M) Train.(M) Speed (ms)

SC
A

R
E

D VDA [1] 2025 0.241 7.702 18.673 0.287 0.597 1.10 111.0 - 15.9
EndoDAC [2] 2024 0.201 5.163 16.421 0.238 0.653 2.69 99.0 1.6 15.0

EndoDAV(Ours) - 0.156 3.113 12.257 0.182 0.761 0.39 111.3 0.19 16.0

H
am

ly
n VDA [1] 2025 0.389 19.308 23.005 0.333 0.513 - 111.0 - 15.9

EndoDAC [2] 2024 0.240 6.998 17.240 0.304 0.589 - 99.0 1.6 15.0
EndoDAV(Ours) - 0.212 5.040 16.759 0.276 0.595 - 111.3 0.19 16.0

Evaluation Protocols. We compute the 5 standard metrics: Abs Rel, Sq Rel,
RMSE, RMSE log and delta for evaluation. We also use a TAE metric proposed
in [18] to evaluate the temporal consistency. We evaluate affine-invariant depth
predictions by previously aligning the scale and shift between the predicted depth
and the ground truth. Note that, different from previous single image depth
estimation methods [2], we follow the video depth estimation methods [1] [4] [6]
to align depth using the median and scale across the entire depth sequence
rather than each depth map. This is more challenging but necessary to ensure
the temporal consistency to be fully evaluated. We average the result from each
scene to obtain the final results.

3.2 Comparison

Quantitative results. Our proposed method is compared with a SOTA method
EndoDAC [2] and a baseline method Video Depth Anything [1]. To ensure fair-
ness, all the models use the ViT-S [3] encoder. Video Depth Anything is a
pretrained model without retraining. EndoDAC is initialized with a pretrained
Depth anything v2 [20] backbone, and finetuned under our experimental setup.
Tabel 1 shows quantitative comparison results. On SCARED dataset, our method
significantly surpasses the other two methods in both accuracy and temporal
consistency. Finetuned from Video Depth Anything, our method significantly
promotes it to predict more accurately in endoscopy scenes. Due to the lack of
temporal information usage, EndoDAC fails to produce a consistent prediction
and presents worst at TAE. Compared with EndoDAC, our method produces
both spatial accurate and temporal consistent results. When achieving the best
performance, our method also has the least trainable parameters. Since we do
not add much parameters, the inference speed of our method is similar with the
other two, being capable of dealing with real-time depth estimation.
Qualitative results. We show qualitative results on SCARED dataset in Fig. 3.
Each model receives a video sequence as input. Video Depth Anything fails to
produce accurate depth in endoscopy scenes. The depth in the green box is
largely inconsistent with depth in other regions. EndoDAC produces a broken
and inconsistent prediction. Depth of the soft tissue in the left top region and the
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Fig. 3. Qualitative results with a video sequence as input. Video Depth Anything [1]
cannot understand the endoscopy scene and predicts wrongly at the corner(in the green
box). EndoDAC [2] presents a broken and inconsistent prediction(in the green box).
Our method achieves both accurate and consistent depth results. For a more direct
visualization, please refer to the video in our supplementary materials.

surgical forceps is unstable along the time dimension. Our method presents an
spatial accurate and temporal consistent prediction, significantly enhancing the
usability of the estimated video depth in downstream tasks. For a more direct
visualization, please refer to the video in our supplementary materials.

3.3 Ablation Study

We conduct ablation study on our proposed methods. These methods are vali-
dated on SCARED Dataset. We set four experiments: with/without projection
loss and with/without depth alignment inference strategy. All the models are
finetuned by our framework with SSB Lora. Table 2 shows the experimental re-
sults. It can be seen that, both of the two strategies benefit the whole model to
produce more accurate and consistent results.

4 Conclusion

To enable accurate and consistent video depth estimation in endoscopy scenes, we
propose to efficiently adapt the video depth estimation foundation model utiliz-
ing a self-supervised framework. This framework predicts both depth and camera
pose, which are learned simultaneously by projecting the depth at the source view
to the target view using the predicted relative camera pose. Therefore, the depth
network can effectively learn the modal information of the endoscopy scene. By



EndoDAV: Depth Any Video in Endoscopy with Spatiotemporal Accuracy 9

Table 2. Ablation study on SCARED dataset. The best results are in bold.

Projection Loss Depth Alignment Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE log ↓ δ ↑ TAE↓
✕ ✕ 0.195 4.273 15.768 0.224 0.639 1.03
✓ ✕ 0.180 4.259 14.554 0.202 0.671 0.80
✕ ✓ 0.162 3.957 13.215 0.208 0.665 0.40
✓ ✓ 0.156 3.113 12.257 0.182 0.761 0.39

utilizing a simple SSB Lora Layer, we only need 0.17% parameters to be train-
able. To further enhance the model’s ability of temporal consistency, we propose
two simple but effective strategies. A projection loss is addressed to utilize the
adjacent depths and relative camera pose to constrain the change of output
depth stream. Considering the characteristics on endoscopic videos, an effective
Depth Alignment Inference strategy is proposed to align the predicted depth
snippet during inference. Our experiments on two public endoscopy datasets
demonstrates the effectiveness on our methods.
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