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Abstract. Myocarditis, an acute cardiac disorder progressing rapidly to
life-threatening heart failure, requires precise lesion segmentation from
Cine Magnetic Resonance Imaging (Cine-MRI) for timely intervention.
Current segmentation accuracy is limited by two key challenges: 1) spa-
tiotemporal discordance between myocardial motion patterns and evolv-
ing pathological features and 2) morphological complexity (irregular bor-
ders, scattered lesions). In this paper, we propose the MG-Mamba, a
framework integrating deep state space models with graph-based spa-
tiotemporal analysis. The architecture employs Mamba blocks to es-
tablish initial intra-/inter-frame dependencies in Cine-MRI sequences.
For Challenge 1, we improve the detection of subtle abnormal motions
through multi-step cross-frame analysis, extending beyond conventional
adjacent-frame analysis. For Challenge 2, we further implement multi-
scale patch division and constructs inter-patch graphs to concurrently
capture global lesion distribution and local geometric patterns. Extensive
evaluations on SYC-QC and SYC-SX clinical datasets demonstrate MG-
Mamba’s superior segmentation accuracy over ten state-of-the-art bench-
marks, significantly advancing myocarditis diagnostic precision. The code
is available at https://github.com/userZ-CY/MICCALI
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1 Introduction

Timely and accurate segmentation of myocarditis lesions is crucial for treat-
ment and patient prognosis [1]. Myocarditis is a group of diseases characterized
primarily by inflammation of the myocardium [2]. The myocarditis progresses
rapidly and it might lead to severe complications, including arrhythmias, heart
failure, and cardiogenic shock [3]. The Lake Louise criteria are commonly used in
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(a) Task: Segmentation of myocarditis lesions using cine-1 (b) Challenge: Spatiotemporal discordance and morph-
MRI images. ological complexity
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Fig. 1. (a): Segmenting myocarditis lesions using Cine-MRI images can determine the
size, distribution, and severity of inflammation. This can help doctors provide targeted
treatment. (b): (I) The abnormal myocardial motion caused by myocarditis can occur
at different times. (II) The myocarditis lesions are unevenly distributed and irregu-
larlyshaped.

clinical practice to diagnose myocarditis, including T2-weighted imaging, early
gadolinium-enhanced imaging, and late gadolinium-enhanced imaging [4]. How-
ever, the nephrotoxicity of gadolinium contrast agents and the prolonged scan
time limit their clinical application [5]. In contrast, Cine-MRI imaging tech-
nology eliminates the need of contrast agents and offers shorter scan time [6],
providing a potentially safer and more effective approach for the segmentation
of myocarditis lesions, as shown in Fig. 1 (a).

However, due to the inherent technical limitations ingrained in Cine-MRI,
it demonstrates insufficient contrast when imaging myocarditis lesions. In re-
cent years, the researches on using deep learning to extract spatiotemporal in-
formation from Cine-MRI images for segmenting cardiomyopathy regions has
achieved inspiring results [7]. Nevertheless, given the morphological complexity
of the myocarditis lesions and spatiotemporal discordance of the myocarditis
motion patterns, existing methods might not be directly applicable to the my-
ocarditis segmentation. First, the motion patterns of myocarditis patients exhibit
significant spatiotemporal inconsistency: the occurrence of abnormal motion is
unpredictable; the compensatory mechanisms of healthy myocardium can mask
subtle abnormalities in affected regions, as shown in Fig. 1 (b) I. Then, as shown
in Fig. 1 (b) II, due to the infiltration patterns of inflammatory cells (either
localized or diffuse) [8], myocardial inflammation lesions typically exhibit irreg-
ular shapes and scattered spatial distributions, which pose challenges in learning
both the local structure information and global distribution information.

To address the aforementioned challenges, we propose a MG-Mamba model
for myocarditis lesion segmentation. We first divides the image into different
patches at multiple scales. Then, for Challenge 1, we employ a Multi-step Cross-
frame Mamba Motion Analysis (MCMMA) module in each scale. This mod-
ule designs multi-step cross-frame scanning sequences, utilizing the Mamba net-
work’s state space modeling capability to scan inter-frame relationships in vary-
ing orders. This approach effectively detects subtle pathological motion pat-
terns caused by myocarditis. For Challenge 2, we propose a Multi-scale Graph
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Fig. 2. The proposed MG-Mamba model consists of two main modules: MCMMA and
MGGA. The MCMMA module captures abnormal myocardial motion features, while
the MGGA module aggregates multi-scale geometric features of the lesion.

Geometric Aggregation (MGGA) module. This module first divides the image
into different patches and constructs a graph by computing the Euclidean dis-
tances between intra-frame patches. Subsequently, we employ Graph Convolu-
tional Networks (GCN) to aggregate geometric features across different scales,
enabling the simultaneous capture of both local structural patterns and global
morphological distributions of myocardial lesions.

Our contributions are summarized as follows: 1) We present a clinical method
for segmentation of myocarditis lesions using Cine-MRI images. This method has
significant clinical potential for myocarditis lesion segmentation without contrast
agents and shorter scan times. 2) We propose a MCMMA module to address the
spatiotemporal inconsistencies in myocardial motion through multi-step cross-
frame state space modeling, and a MGGA module to address the morphology
complexity by constructing multi-scale graphs that aggregate global lesion dis-
tribution and local geometric information. 3) Extensive experiments conducted
on two clinical datasets (10,400 Cine-MRI images in total) demonstrate that the
MG-Mamba is effective and superior to ten state-of-the-art methods.

2 Method

Overall Pipeline. Our MG-Mamba framework combines two key components:
the Multi-step Cross-frame Mamba Motion Analysis (MCMMA) module (Sec-
tion 2.1), designed to identify abnormal motion patterns via multi-step cross-
frame state space modeling, and the Multi-scale Graph Geometric Aggregation
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(MGGA) module (Section 2.2), which extracts lesion geometric features through
multi-scale graph learning. The overall workflow is depicted in Fig. 2.

2.1 Multi-step Cross-frame Mamba Motion Analysis (MCMMA)

To detect subtle pathological motion patterns caused by myocarditis, we pro-
pose the MCMMA module, which captures motion abnormalities by multi-step
cross-frame state space modeling. We first create multi-step inter-frame scanning
sequences by spanning varying numbers of frames. Then, we employ Mamba (9]
model to scan created sequences extract motion features.

Specifically, for each frame I; € RT*W (with i = 1,2,...,7T), H denotes the
height, W denotes the width and T denotes the frames( in this experiment, T
= 20.). Then we divide it into image patches at different scales of 8 x 8, 10 x 10,
and 16 x 16. Through Patch Embedding (PE) operations, we generate patch
embeddings P} € R™>d p2 ¢ Rr2Xd2 and P? € R™*%  where ny, ng, and
nz denote the number of patches, and dy, do, and d3 denote the embedding
dimensions.

F)il — PE8X8(Ii), Pi2 — PElOXlO(Ii)’ Pi3 — PE16><16(Ii) (1)

Next, for the multi-scale patches P}, P?, P?, we sequentially process the
features P € RT*"*4 obtained from the 7" frames of data at each scale, where T’
denotes the number of frames, n denotes the number of patches, d denotes the
embedding dimensions.

Afterward, at each scale, we employ the Mamba model to learn inter-frame
dependencies of the P/={P{,Pj, PJ, ..., P}}. To enhance the motion modeling
capability of our block, we introduce a triple-branch architecture that operates
in parallel: a forward SSM branch, a backward SSM branch, and an inter-frame
SSM branch.

At j-th scale, we first perform forward SSM to scan from the first frame to
the T-th frame, while backward SSM to scan from the T-th frame to the first
frame.

Py =SSM(f): P} =P} —...— Pj | -~ PJ (2)

P,=SSM(b): Ph.—» Pl._, — ...~ P} —» P} (3)

For inter-frame SSM, we scan across frames by varying the frame interval
(At = 2, 3, 5)

— P

- P (1425 A,][2]

[1+A,][2] —... Py (4)

Pa, = SSM(A,) : Pl

Where [a][b] indicate the b-th patch embedding in a-th frame.
After, we fuse the output of the forward, backward and inter-frame S.SM:

XZLN(f)f@ﬁbe)At=2®ﬁ4t=3@ﬁ4t=5) (5)

where ©® denotes the Hadamard product. Given three different scales, we can
get (Xl c RTanxdl,XQ c RTxngde’XB c RTXnngg).
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2.2 Multi-scale Graph Geometric Aggregation(MGGA)

To capture the morphological complexity of myocarditis lesions, we propose the
MGGA module, which learns geometric features through multi-scale graph learn-
ing. Specifically, we further model the geometric features of the multi-scale em-
beddings (X', X2, X?) in each frame. Take t-th frame X} = {x},,2{5,...24,, } as
an example, each patch embedding z}; can be seen as an vertex. Then we com-
pute the Euclidean distance between embeddings within the same frame. Then,
we employ the k-nearest neighbor (k-NN) algorithm to identify the k& nearest
neighbors for each vertex. Based on these neighbors, we construct an intra-patch
graph G = (X}, E), where E denotes the corresponding set of edges, and each
vertex mgz € P only connects to its k-nearest neighbors. Then, we use a Graph
Convolution Network [10] on the intra-patch graph Gf to aggregate geometric
features of the lesion regions. It aggregates small local features of the lesion into
global distribution features. For three scale space, we can get:

Gl =GCN(G)), G¥ =GCN(G?), G¥ =GCN(G?) (6)

where G, G2, G? represent the graphs constructed at different scales. GL', G2,
G?/ denote the outputs of graph convolution.

Finally, we aggregate the feature maps of different scales to obtain the final
multi-scale fused feature map Fyuseq- This is achieved by performing a weighted
summation of the normalized feature maps G1', G¥', and G3', where the weights
are learned during training.

A / /
Frusea =w1 - Gj +wy -G} +ws- G} (7)

where w1, ws, and w3 are the learnable weights for each scale.

2.3 Loss function

For the fused feature map F'yscq, We generate the lesion segmentation map Fo,
through a conv operation with a kernel size of 20 x 1 x 1. Then, we employ
combining Cross-entropy loss and Dice loss to optimize our model.

L:Oé'LCE+(1_a)'LDice (8>
where « is a weighting parameter that balances the influence of the two losses,

o is 0.6.

3 Experiments

3.1 Dataset and Implementation Details

Dataset. Our datasets consist of Cine-MRI images from short-axis views of the
left ventricle, collected from two hospitals in China and referred to as SYC-QC
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and SYC-SX. These datasets include 320 and 200 myocarditis cases, respec-
tively, totaling of 10,400 Cine-MRI images. Due to variations in MRI scanners,
the number of frames in cine-sequences varies between 20 and 25. To standardize
the data, all sequences were uniformly downsampled to 20 frames at equal inter-
vals. This ensures consistency across different scanners and patients, facilitating
feature extraction and model training.

Evaluation Metrics. We employ the Dice score(Dice)|%]|, Precision(Pre)|%],
Recall(Rec)|[%] and Hausdorff Distance(HD)[mm] as metrics.
Implementation Details. Our model MG-Mamba is implemented using Py-
Torch 2.2.1 with CUDA 12.0. All experiments were run on an NVIDIA GeForce
RTX 4090 GPU. During training, we used a batch size of 8 per GPU for 200
epochs. Optimization is performed using Adam with a Cosine Annealing with
Warm Restarts scheduler(initial learning rate of le-3).

Table 1. Comparison with other methods on the SYC-QC and SYC-SX. The best-
performing results are highlighted in bold. Natural denotes natural image segmentation
methods. Medical denotes medical image segmentation methods.

SYC-QC SYC-SX
Dicet Pref Rect HD||Dicef Pret Rect HD|
OW-VISF(IJCV’24) [11] |74.74 68.62 84.39 5.16 | 73.56 65.10 86.96 5.85
'® Video-kMaX (WACV’24) [12]] 73.81 65.94 87.03 5.49 | 72.15 65.79 82.61 5.49

Methods

£ TarViS(CVPR'23) [13] |77.28 73.98 82.77 4.66 |73.90 66.35 86.39 5.78
Z  TDSNet(INS'24) [14]  [71.01 59.15 91.97 7.02 [70.32 61.28 86.52 7.83

CFFM+-+(TPAMI'24) [15] | 78.92 75.42 84.90 5.70 | 75.47 68.90 86.31 5.01

CAS-Net(MedIA™23) [16] | 78.48 71.64 88.51 6.06 | 76.62 67.94 90.23 5.34
'S PolypNext(IJCARS'23) [17] | 75.16 70.81 82.87 4.94 | 74.96 67.03 88.03 6.56
S MemSAM(CVPR'24) [18] [80.74 75.93 87.84 5.64 |80.26 75.37 87.62 5.84
S ZePT(CVPR'24) [19]  [81.50 79.28 85.77 3.99 |80.09 76.31 86.02 4.01

Vivim(arXiv'24) [20] 83.68 80.97 88.21 4.68 |82.41 77.73 89.32 5.01
Ours 86.92 88.51 86.54 3.84|86.35 87.56 86.45 3.99

3.2 Comparison with State-of-the-art Methods

We validated our model on the SYC-QC and SYC-SX datasets, comparing it with
ten state-of-the-art methods, including five natural image segmentation meth-
ods and five medical image segmentation methods. We compared our model with
OW-VISF [11], Video-kMaX [12], TarViS [13], TDSNet [14] and CFFM++ [15]
for natural image segmentation, and with CAS-Net [16], PolypNext [17], Mem-
SAM [18], ZePT [19] and Vivim [20] for medical image segmentation. As shown
in Table 1, our method outperforms others on both datasets, achieving a Dice
of 86.92% and HD of 3.84 mm on SYC-QC, and a Dice of 86.35% and HD of
3.99 mm on SYC-SX. For visualization, we selected three top-performing meth-
ods from each category for comparison, including CFFM++, TarViS, OW-VISF,
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Fig. 3. Qualitative comparison of six different methods on SYC-QC. The green area
in the figure indicates false positives, and the red area indicates false negatives. The
blue boxed area indicates that we segmented the lesion details better.

MemSAM, ZePT and Vivim. As illustrated in Fig. 3, our model demonstrates
superior segmentation performance, particularly in capturing fine details of my-
ocarditis lesions.

3.3 Ablation Studies and Analysis

Effectiveness of different components. We conducted ablation studies on
the SYC-QC dataset to validate the contributions of the MCMMA and MGGA
modules in MG-Mamba. Three model versions were compared: M1 (backbone),
2 (backbone + MCMMA), and M3 (backbone + MGGA). Results in Ta-
ble 2 show that both M2 and M3 outperform M1, while the MG-Mamba model
(MCMMA + MGGA) achieves the best performance across all metrics. This
demonstrates the complementary and synergistic effects of MCMMA and MGGA
in enhancing lesion segmentation accuracy and robustness.
Feature Visualization Analysis. To further validate the effectiveness of our
proposed MG-Mamba model, we perform feature visualization analysis on this
model and several comparison models with better performance. In the experi-
ment, we use the t-SNE technique to reduce the dimensions of normal and lesion
patches in the features for visualization. The experimental results are shown in
Fig. 4 (a). We can see that our MG-Mamba model exhibits clearer class separa-
tion and tighter intra-class clustering compared to other models, demonstrating
its superior discriminative capability.
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Table 2. Ablation Studies of different components of our method.

Methods Modules SYC-QC
MCMMA MGGA| Dicef Pref Rect HD|
M1 - - 82.64 81.58 85.23 4.48
M2 v - | 83611007 82.5610.08 86.2811.05 4.0350.45
M3 - v 84.4941.85 84.9013.32 85.61140.38 3.920.56
Ours v v 86.9214.28 88.5116.93 86.5411.31 3.84,0.64
_,f" "‘. 90| ~#--Dice
! \ | -e—Rec
\ S oo —oP
\;" % 88 re ’————-'_‘—__.\\
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Fig. 4. (a) shows the t-SNE results of our MG-Mamba model and other comparative
models. (b) shows the segmentation results of MG-Mamba with respect to different
numbers k of nearest neighbors in k-NN graph.

Stability Analysis. In the MG-Mamba model, the neighborhood size K of
the k-NN algorithm influences the learning of geometric features of myocarditis
lesions. To evaluate the effect of different values of K on the model performance,
we trained the model on the SYC-QC dataset with K values set to {1, 3, 6, 9,
12, 15}. As shown in Fig. 4 (b), the model’s performance initially improves and
then declines as K increases, peaking at K=9. This value provides an optimal
local space for capturing detailed geometric information.

4 Conclusion.

In our work, we propose the MG-Mamba framework for myocarditis lesion seg-
mentation in Cine-MRI images. The framework integrates two key modules:
MCMMA for multi-step cross-frame motion analysis to address spatiotemporal
inconsistencies, and MGGA for multi-scale graph geometric aggregation to cap-
ture both local structural patterns and global lesion distributions. Experimental
results demonstrate significant performance gains over state-of-the-art methods,
highlighting the effectiveness of our approach.
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