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Abstract. Vision-language models have demonstrated remarkable suc-
cess in general medical image analysis, yet their application in pediatric
imaging remains significantly underexplored. These models show limited
performance on pediatric datasets, primarily due to domain gaps stem-
ming from anatomical differences, lower radiation doses, and pediatric-
specific diseases. To this end, we present the first pediatric vision-language
pre-training framework, dubbed PedCLIP, trained on a comprehensive
pediatric imaging dataset comprising 404,670 X-rays of pediatric pa-
tients across diverse anatomical regions. To address anatomical diversity,
we introduce a Mixture of Body part Experts design, with each expert
specializing in learning features from distinct anatomical regions. Experi-
mental evaluation across eleven downstream tasks demonstrates that our
model significantly outperforms current state-of-the-art vision-language
models, achieving superior diagnostic accuracy in challenging pediatric
conditions, including rare diseases such as pediatric inflammatory arthri-
tis. Code is available: https://github.com/tadeephuy /Ped CLIP

Keywords: pediatric - mixture-of-experts - vision-language-model.

1 Introduction

Pediatric imaging serves as a critical tool for early diagnosis and substantially in-
fluences long-term health outcomes in children. Beside specialized medical mod-
els [22J912T207], recent advances in medical foundational vision-language models
(VLMs) [260232278IT925/T3] have attracted significant attention due to their
robust performance across various downstream tasks. However, their application
to pediatric data remains limited.

These pretrained models have demonstrated suboptimal performance on pe-
diatric datasets, indicating a clear domain gap (Fig. . In this study, we explore
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Fig. 1. Zero-shot classification performance of adult Chest X-ray pretrained mod-
els (ChexZero [23], CaRZero [13], GLoRIA [6], MedCLIP [26]) versus our pediatric
multi-body-parts pretrained model. Adult Chest vision language models demonstrate
subpar performance on Pediatric Chest (Pedi-CXR [18], CHD-CXR [28]) and other
body part (Wrist) [16] X-rays datasets.

the underlying factors contributing to this gap. First, pediatric X-rays show
anatomical differences (e.g., smaller lung fields, developing rib cage) compared
to adult . Second, pediatric imaging protocols employ lower radiation doses [24],
affecting image property. Third, most existing medical foundation VLMs are pre-
dominantly trained on chest X-ray image-text pairs dataset from MIMIC [IT].
This results in a bias toward the chest region due to the lack of data samples
collected from other body parts. Consequently, these models underperform when
applied to other anatomical regions (i.e., hip, knee) (see Fig. .

To bridge this gap, we propose the first-of-its-kind foundational pediatric
VLMs. Our model is pretrained on 400K pediatric X-rays collected from 200K
pediatric cases. This dataset spans multiple anatomical regions to support the
model’s generalizability across body parts. First, such a dataset exhibits a het-
erogeneity property due to the imaging differences for different body parts. We
empirically show that training a standard VLM on multiple body parts results
in subpar performance, which we attribute to feature interference when learn-
ing heterogeneous anatomical features. To address these issues, we propose a
Mixture of Body Experts (MoBE) architecture, where each expert specializes in
a body part, allowing the model to seamlessly handle the anatomical diversity.
The experimental results demonstrate that the MoBE design alleviates feature
interference when the VLM is trained on multiple body part data.

Our contributions are summarized as follows: (i) We introduce the first foun-
dational pediatric VLM, dubbed PedCLIP, pretrained on a diverse pediatric
dataset encompassing multiple anatomical regions; (ii) We employ Mixture of
Body Experts, wherein each expert specializes in learning features from a dis-
tinct body part, effectively addressing the heterogeneity of the dataset. (iii)
We demonstrate state-of-the-art performance across five tasks on five pediatric
datasets, outperforming existing VLMs in both zero-shot and supervised set-
tings. We will open source our foundational PedCLIP model to facilitate open
pediatric imaging analysis research.
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2 Method

In this section, we first introduce the dataset curation process and then describe
the foundational model with Mixture of Body part Experts (MoBE).

2.1 Pediatric X-rays (PeXR) dataset curation

To pre-train our foundational pediatric VLM, we present PeXR, a large-scale
dataset comprising 404,670 pediatric X-rays of 23 anatomical regions collected
from 262,577 imaging studies from 94,543 pediatric patients. Major anatomical
regions include chest, wrist and forearms take up 46%. Each case includes X-rays
filming multiple body parts, but the corresponding descriptions are consolidated
into a single radiology report. Therefore, matching individual X-rays of the in-
dividual body parts to the whole report is redundant and noisy, as the report
contains irrelevant details from other anatomical regions, depicting a noisy-label
problem. To mitigate this, we extract body-part-specific text from the report,
enabling the trained VLM to associate each X-ray with its relevant texts. To
this end, we first leverage the Large Language Model (LLM) Llama-3.1 [4] to
preprocess the text by removing mentions of medical history and irrelevant con-
textual information. Then, we query the LLM to extract the text corresponding
to the available body part XRs of the case (see Fig. . The extracted text is
then matched to the corresponding XRs, forming (XR, text, anatomy) triplets.
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Fig. 2. We leverage Llama-3.1[4] to extract the corresponding text of each body part
XR from the raw report as shown in this hip and knee example.

2.2 PedCLIP: Pediatric Vison-Language Model with MoBE

From the curated training set Q = {(z,,z¢,7p):}v;, where z; is the report
excerpt of the XR image x, for the body part index zj,, we train a vision-
language model consisting of a text encoder ¢;, and an image encoder ¢, of L
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vision transformer layers to extract their respective features. The text encoder ¢,
encodes x; into a sequence of D text tokens t € R® and the global [CLS] token:
T = {t1,...,tp,trcLsy }- The image encoder ¢, encodes z, into a sequence of S
patch token v € R® and the global image token [IMG]: V! = {v1, ..., vs, vrmel }s
where C is the feature size and [ is the index of the transformer layer.

Existing VLMs [252I23/T9] only use shared MLP inside the Transformer to
learn features. We show empirically that this single-expert design suffers from
feature interference when learning from multiple body parts. This phenomenon
is also commonly known as negative transfer [I4JI5] occurring in multi-task
learning. Specifically, features from the under-represented body parts are often
dominated by those from other body parts. To enhance the anatomical special-
ization of the image encoder ¢,, we adopt a design a Mixture of Body Part
Experts (MoBE) module, replacing the MLP to alleviate feature interference.
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Fig. 3. The architecture of PedCLIP: the foundational pediatric vision-language pre-
training framework with Mixture of Body part Experts (MoBE). Left: We adopt
BERT Encoder as the text encoder ¢, and a Vision transformer of L transformer
layers as the image encoder ¢,. Right: In the Image encoder, we replace the MLP
block in the transformer layer with the MoBE block. The MoBE block comprises a
gating network G and several MLP experts for each body part. The gating network
assigns a weight for each expert output, which is summed to yield the final output of
the MoBE block.

Particularly, each MoBE block contains E body part experts, {B.}¥ and
a gating network (. Each expert B, is specialized in an anatomical region in
the XR images, implemented as an MLP. The gating network G, conditioned
on the anatomical region, determines the involvement of each expert for a given
input. In particular, the MoBE block is constructed as follows. First, the gating
network G looks at the global [IMG] token of the XR and computes a score for
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each anatomical expert B, such that:
s = G(vrgy) = softmax(vime - Wa), (1)

where s € R¥ is the expert assignment scores, indicating which expert B, is
more suitable to process the input image, Wg € RE*F represents the learnable
weights of the gating network. Each expert B, projects the visual tokens such
that B.(V) = V.. Then, the final output of the MoBE block at transformer layer
[ is computed as the weighted sum across F body experts:

Loyl o Z exp(vl[IMG] Wé>e 11/l
MoBE! (V1) Z =Y —% ; —BL(V'). (2)
e=1 oo 2 exp(Vig - We)

Thus, the weighting mechanism ensures that the expert corresponding to the
relevant anatomical region in the X-ray image predominantly influences the final
image token representation. We illustrate the model architecture in Fig.

2.3 Learning objectives

Multi-modal contrastive. As a common practice in VLM pretraining, the
training objective is contrastive learning which pulls an XR towards its corre-
sponding report and away from other reports. Here, we employ InfoNCE[I7] for

multi-modal contrastive learning. Given a minibatch of M XR-reports {(z,, z;); }M

we teach the model to correctly match XR-report pairs in the batch with sym-
metric cross-modal objectives, including image-to-text and text-to-image losses:

1 exp (sim(z, x%)/r) )
. <ZJIV£1 exp(snn(xl )/ )
exp(sim(z}, z)/7)
?)

Ef-zv =—1lo
& (Z;M 1 €Xp (sun(a:t, 7, /T) )

where sim(z,, x¢) = U?IMG] trcLs) denotes the cosine similarity between the global
visual and text tokens of the XR and the report, and 7 denotes the temperature
hyperparameter.

Expert assignment. To correctly assign the input XR to the corresponding
body expert, the gating weight W of the MoBE is learned with cross-entropy
(CE) using the body part label zy, i.e., £ = CE(s,z}p). Finally, the overall loss
objectives is £ = 1(¢¥2' + (*2v) + A, where A scales the expert assignment loss.

v2t
%

(3)

(4)

3 Experiments and Results

3.1 Experimental settings

Implementation details. PedCLIP uses ViT-B/16 pretrained on ImageNet as
the image encoder and BioClinicalBERT [I] as the text encoder. The model is

b
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pretrained on PeXR for 50 epochs with a learning rate of 107° and a batch
size of 256. We employ an image size of 224 x 224, and pad text reports to a
maximum of 120 tokens. In the first 10 epochs, we use a fixed A = 1 and teacher
forcing, where expert assignments are based on body part labels, xp, rather than
the Gating network’s output, for stable early training. After this period, the
model begins using the Gating network’s output for expert assignments, with
A linearly annealed during the remaining 40 epochs. The MoBE block consists
of 23 experts each for one of the 23 anatomical regions. Our models and other
baselines were trained on two NVIDIA RTX A6000.

Datasets. We evaluate the model on 5 datasets, encompassing a wide range of
body parts. Pedi-CXR [I§] is a pediatric Chest XRs dataset that contains 14 pe-
diatric findings. CHD-CXR. [28] dataset contains 828 images of congenital heart
disease in children. GRAZPEDWRI-DX [I6] is a pediatric wrist XRs dataset of
20,037 images for fracture detection. Arthritis is our privately collected multi-
body part pediatric XR dataset, which comprises 1,191 images for the pediatric
inflammatory arthritis detection task. RSNA-BoneAge [0] is a dataset assess-
ing bone age from 12,800 pediatric hand XRs. The performance of VLMs is
evaluated using the AUC, MAE, and Dice scores, respectively, for classification,
regression, and segmentation tasks.

Table 1. The zero-shot classification performance (AUC) of the original adult pre-
trained and our reproduced pediatric PeXR pretrained vision-language models.

Dataset
Model Venue | GHD PCXR Arth. GRAZ. | AVG.
Generalist
BioMedCLIP [27] | NEJM AI’24 | 0.625 0.513 0.459 0.507 0.526
UniMedCLIP [12] CoRR’24 0.578 0.482 0.532 0.509 0.525
Adult
GLoRIA [6] ICCV’21 0.557 0.538 0.477 0.559 0.533
ChexZero [23] Nat.BME’22 | 0.478 0.513 0.475 0.507 0.493
MedCLIP [26] EMNLP’22 0.521 0.571 0.486 0.494 0.518
MGCA [25] NIPS’22 0.507 0.468 0.366 0.505 0.461
Prior 2] ICCV’23 0.505 0.507 0.477 0.491 0.495
CARZero [13] CVPR’24 0.503 0.511 0.481 0.591 0.522
Pediatric
GLoRIA [6] ICCV’21 0.509 0.464 0.491 0.628 0.523
MedCLIP [26] EMNLP’22 0.511 0.599 0.441 0.513 0.516
MGCA [25] NIPS’22 0.483 0.529 0.347 0.757 0.529
Prior [2] ICCV’23 0.467 0.558 0.516 0.507 0.512
CARZero [13] CVPR’24 0.511 0.596 0.412 0.718 0.559

PedCLIP | Proposed |0.639 0.608 0.519 0.760 | 0.632
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Table 2. The fine-tuning performance of adult and pediatric VLMs under classification
(AUC), regression (MAE) and segmentation (Dice score).

Model v Classification Regress. | Segment.
oade enue | cHD PCXR Arth. GRAZ.| RSNA | GRAZ.
Adult
GLoRIA [6] ICCV’21 | 0.851 0.742 0.795  0.784 22.2 0.453
MedCLIP [26] | EMNLP’22 | 0.760  0.774  0.646  0.621 62.3 0.539
MGCA [25] NIPS22 | 0.854 0.763 0.850  0.889 27.9 0.612
Prior [2] ICCV’23 | 0.881  0.743  0.813  0.941 14.2 0.494
CARZero [13] | CVPR24 | 0.700 0.735 0.594  0.793 21.4 0.641
Pediatric
GLoRIA [6] ICCV’21 | 0.810 0.690 0.854  0.960 16.5 0.569
MedCLIP [26] | EMNLP’22 | 0.529  0.533  0.623  0.549 12.7 0.479
MGCA [25] NIPS22 | 0.869 0.766  0.877  0.954 21.1 0.619
Prior [2] ICCV’23 | 0.892 0.675 0.921  0.945 13.0 0.536
CARZero [13] | CVPR24 | 0.812 0.753  0.731  0.935 17.8 0.644
PedCLIP | Proposed | 0.911 0.782 0.934 0.970 | 10.6 | 0.652

Downstream task setup. We evaluate PedCLIP and other foundational vision-
language models, including GLoRIA [6], ChexZero [23], Med CLIP [26], MGCA [25],
Prior [2] and CARZero [I3] on 11 tasks, including both zero-shot and linear-
probing classification, segmentation and regression. The performance of the orig-
inal model pre-trained on the Adult data, and pre-trained on our large-scale Pe-
diatric PeXR datasets is reported. We also compare with Generalist VLMs that
are trained on varied body parts and modalities beyond XRs (BioMedCLIP [27],
UniMedCLIP [12]). We evaluate the model on zero-shot and linear-probing clas-
sification tasks on Pedi-CXR, CHD, Arthritis, and GRAZPEDIWRI-DX, the
segmentation task on GRAZPEDIWRI-DX, and the regression task on RSNA-
BoneAge. Lastly, we conduct a Concept Alignment task to evaluate the VLM’s
ability to classify fine-grained concepts.

3.2 Results

Tab.[I]shows zero-shot classification performance. The Adult pretrained mod-
els struggle with pediatric data, demonstrating comparable results with the Gen-
eralist models. Adult models are better on CHD as they are chest-pretrained, and
mixed body parts in PeXR interfere with chest features of PeXR-VLMs (MoBE
fixes this in Fig.5). Notably, retraining the models on our pediatric dataset PeXR,
yields marked improvements across the board. This necessitates dedicated pe-
diatric foundational models. Our PedCLIP significantly improves the score by
10.6%, 9.9%, and 7.2% over the best-performing models in Generalist, Adult, and
Pediatric settings respectively . This highlights the effectiveness of our MoBE for
multi-anatomy pre-training. Tab. [2[shows the fine-tuning evaluation of classifica-
tion, regression, and segmentation performance. The proposed PedCLIP achieves
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Fig. 4. Left: MoBE’s performance as integrated in different vision transformer layer.
Right: Concept Alignment performance of MoBE versus other VLMs.

a 5% and 3% AUC improvement over the Adult and Pediatric pretrained VLMs,
respectively. To evaluate the alignment of models with pediatric inflam-
matory arthritis findings, six clinical concepts are annotated on our Arthritis
dataset: inflammation, bony changes, erosion, joint space narrowing, soft tis-
sue swelling, and effusion. We then perform a linear probing evaluation for each
concept and report the results in Fig. [@] - Right. PedCLIP achieves the highest
performance, suggesting a strong alignment with human-interpretable concepts.

3.3 Ablation Study

MoBE layer index. We investigate the optimal layer for integrating the MoBE
block, as shown in Fig. [4] Left, indicating that MoBE performs best when placed
in the later layers of the image encoder.

MoBE design. Using a single MLP in the transformer layer of ¢, on a multi-
body part dataset like PeXR yields suboptimal results due to feature interference,
where features of one part are forgotten when the model learns other parts.

As shown in Fig. ] the single MLP performs better when only trained on
the target body part, but the performance drops when trained on multiple body
parts. In contrast, MoBE handles multi-body part datasets effectively, match-
ing the MLP-target settings. The learned soft-gate enables shared findings fea-
tures across body parts. While there are other MoE approaches for medical do-
main [I0J3], to our knowledge, this is the first to apply soft-MoE to anatomically
diverse pediatric data.

4 Conclusion

In conclusion, this paper demonstrates the limitations of current medical VLMs
on pediatric medical tasks and proposes PedCLIP, the first pediatric VLM,
trained on PeXR, a large-scale pediatric XR multi-body part dataset, achiev-
ing state-of-the-art performance. By incorporating MoBE, where each expert
specializes in a particular body part, PedCLIP effectively addresses the hetero-
geneity challenge of the multi-body part nature of the pediatric imaging data. We
believe this work will advance foundational models in pediatric imaging analysis.
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Fig. 5. Left: Zero-shot AUC on Wrist (GRAZ.), Chest (CHD-CXR) and Knee (Arthti-
tis) dataset of 3 settings: MLP (trained on multiple body-part PeXR), MLP-target
(trained only on the target body part samples in PeXR) and MoBE (trained on PeXR).
Right: the relative AUC compared to the MLP-target settings of multi-MLP and MoBE,
which indicates feature interference.
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