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Abstract. Recent advances in deep learning have made it possible to
predict phenotypic measures directly from functional magnetic resonance
imaging (fMRI) brain volumes, sparking significant interest in the neu-
roimaging community. However, existing approaches, primarily based on
convolutional neural networks or transformer architectures, often strug-
gle to model the complex relationships inherent in fMRI data, limited
by their inability to capture long-range spatial and temporal dependen-
cies. To overcome these shortcomings, we introduce BrainMT, a novel
hybrid framework designed to efficiently learn and integrate long-range
spatiotemporal attributes in fMRI data. Our framework operates in two
stages: (1) a bidirectional Mamba block with a temporal-first scanning
mechanism to capture global temporal interactions in a computationally
efficient manner; and (2) a transformer block leveraging self-attention
to model global spatial relationships across the deep features processed
by the Mamba block. Extensive experiments on two large-scale public
datasets, UKBioBank and the Human Connectome Project, demonstrate
that BrainMT achieves state-of-the-art performance on both classifica-
tion (sex prediction) and regression (cognitive intelligence prediction)
tasks, outperforming existing methods by a significant margin. Our code
and implementation details are available at link.
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1 Introduction

The human brain is a complex, dynamic system whose intrinsic spatiotemporal
organization can be investigated through functional connectivity, often modeled
using functional magnetic resonance imaging (fMRI) [21] data. In recent years,
there has been significant interest in building predictive models that explore the
relationship between functional connectivity and cognition to enhance under-
standing of neurological and neuropsychiatric disorders [12,6,29,15].

Existing predictive approaches for fMRI data can be broadly categorized into
correlation-based and voxel-based methods. Correlation-based methods typically
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employ a two-step process to address the high dimensionality of 4D spatiotempo-
ral fMRI data (three spatial dimensions and time). First, researchers use anatom-
ical or functional parcellations or projections to reduce data dimensionality, fol-
lowed by the computation of a subject-specific functional connectivity measure
(typically a matrix). Data-driven models operate on these lower-dimensional
matrices to predict a target variable associated with a downstream task. In the
past decade, deep learning tools have been used as feature selection techniques
in this pipeline, leveraging architectures such as convolutional neural networks
[13,14], transformers [11,25], and graph neural networks [19]. However, these
methods face two main drawbacks. 1) Loss of spatial structure: reducing 4D
data to 2D matrices can discard important spatial information, especially when
very-low dimensional parcellations are used [18]. 2) Lack of consensus in par-
cellation strategies: different parcellation schemes and connectivity metrics can
yield varying model performance [1], motivating the need for predictive models
that learn directly from raw volumetric fMRI data.

To address these limitations, recent studies have proposed using a voxel-based
framework. Here preprocessed, voxel-level fMRI data are used as input in end-
to-end deep learning pipelines. For instance, [23] proposed a transformer-centric
architecture for predicting cognitive intelligence and classifying schizophrenia,
while [16] developed a swin transformer-based framework for subject-specific
phenotype prediction. Despite these advances, models are constrained by the
quadratic complexity of transformers, forcing them to process only relatively
short sequences of fMRI volumes (10 to 20 frames) and then aggregate predic-
tions across multiple time-window batches. Given the relative sluggishness of
the hemodynamics underlying fMRI signals [20], restricting the model to a few
time frames may overlook predictive temporal dynamics. In fact, [16] shows that
incorporating more time frames steadily improves model performance.

In this work, we propose BrainMT, a novel hybrid deep learning framework
that addresses the above challenges by combining a bi-directional Mamba block
with a global transformer module to capture the full spatiotemporal complexity
of fMRI data. Drawing inspiration from recent Mamba architectures [17,26,10],
we adopt a temporal-first scanning mechanism to efficiently handle extended
fMRI sequences, mitigating the computational bottlenecks found in earlier ap-
proaches. This design enables BrainMT to preserve and model long-range tem-
poral signals while leveraging a lightweight global transformer to learn spatial
dependencies between brain regions. Through extensive experiments and ab-
lation studies on two large-scale public datasets - UKBioBank (UKB) and the
Human Connectome Project (HCP), we demonstrate that BrainMT outperforms
existing methods and generalizes robustly across diverse tasks for improved phe-
notypic prediction in neuroimaging.

2 Methods

Figure. 1 provides an overview of our proposed BrainMT framework, which em-
ploys a cascaded design comprising three primary components: (1) a convolution
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block; (2) a spatiotemporal Mamba block; and (3) a transformer block. Starting
from fMRI data X ∈ RT×H×W×D - where T represents the number of sampled
volumes (i.e., one per TR; the time resolution of the signal), and H, W , and D
denote the three spatial dimensions - we first partition each volume into partially
overlapping patches of size H

4 × W
4 × D

4 . These patches are then projected into
a C-dimensional embedding space using two convolution layers. The resulting
embedded feature maps serve as inputs to the following sub-modules.

Fig. 1. Left: (a) Overall architecture of BrainMT. Right: (b) Structure of the bi-
directional spatio-temporal Mamba block. (c) Scan mechanism. (d) Comparison of
GPU memory usage and model parameters between BrainMT and SwiFT [16].

Convolution block: The convolution block acts as a hierarchical feature ex-
tractor for the embedded fMRI patches, generating multi-scale representations
that capture coarse (high-resolution) and fine (low-resolution) details. In our
framework, this block is implemented as a two-stage network, where each stage
consists of a spatial convolution encoder followed by a downsampling operation.
Formally, given embedded patches of size H

4 × W
4 × D

4 ×C, the convolution en-
coder outputs feature maps Fi with dimensions H

4×2i ×
W

4×2i ×
D

4×2i and channel
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dimension (C × 2i) for i ∈ {1, 2}, using the following residual configuration:

X̂ = GELU(LN(Conv3D(Xin)))

Xconv = LN(Conv3D(X̂)) +Xin

where GELU is the Gaussian Error Linear Unit activation function and LN de-
notes layer normalization.

Positional embedding: Next, we add learnable positional embeddings [3,4] to
the convolution block output, as the following Mamba block relies on token posi-
tions to model long-range dependencies. Let Xconv ∈ RT× H

16×
W
16×

D
16×Z with Z =

4C, be the convolution block’s output. First, each volumetric slice is flattened
into a sequence of length K = H

16 × W
16 × D

16 . We then add two learnable po-
sitional embeddings: a spatial embedding Ps ∈ R1×K×Z and a temporal em-
bedding Pt ∈ RT×1×Z to the sequence. Additionally, we prepend a learnable
classification token Xcls ∈ R1×1×Z to serve as a feature aggregator. This yields:

Xout = [Xcls, Xconv] +Ps +Pt,

where [ ·, ·] denotes concatenation along the token dimension. Finally, we reshape
Xout from RT×K×Z to R1×L×Z with L = T ×K, providing a longer context se-
quence for subsequent spatiotemporal modeling.

Spatio-temporal Mamba block: The Mamba block employs bi-directional se-
lective state-space models (SSMs) to capture long-context representations from
the input sequence. In what follows, we first outline the fundamentals of SSMs
and their discretization in Mamba, and then describe the architecture that
adapts Mamba to 4D spatiotemporal data.
(i) SSM and Mamba preliminaries: State-space models (SSMs), which originate
from Kalman filters, are linear-time-invariant (LTI) systems that map a one-
dimensional continuous input sequence x(t) ∈ R to a one-dimensional output
sequence y(t) ∈ R via an internal hidden state h(t) ∈ RN , where N is the
dimension of the hidden state. Formally,

h′(t) = Ah(t) +Bx(t), (1)
y(t) = Ch(t), (2)

where A ∈ RN×N is the evolution matrix, and B ∈ RN×1 and C ∈ R1×N are
projection matrices. In order to handle discrete input data (e.g., images or fMRI
sequences), Mamba [9] applies a Zero-Order Hold (ZOH) discretization to A, B,
C using a time-scale parameter ∆:

A = exp(∆A), B = (∆A)−1
(
exp(∆A)− I

)
∆B, (3)

h(t) = Ah(t− 1) +Bx(t), y(t) = Ch(t). (4)

Because SSMs are LTI, their parameters A, B, C remain fixed for all time steps,
which can limit contextual learning. To overcome this, Mamba introduces a
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selective scan mechanism that make B, C, ∆ input-dependent, thereby enabling
the model to adaptively learn contextual relations from longer sequences.
(ii) Architecture: While the original Mamba formulation operates on 1D data
(e.g., text), vision tasks require modeling spatial relationships. Hence, we adopt
the Vision Mamba block [34], which incorporates bi-directional selective SSMs
to capture spatiotemporal context in the data. Figure. 1b provides a schematic
illustration. The input sequence is first linearly projected into two vectors, x and
z, each of dimension d. To prevent tokens from being processed independently,
a 1D convolution is applied to x before feeding it into forward and backward
selective SSM modules, producing yforward and ybackward. Both outputs are then
gated by z and summed to form the final output sequence. By processing the
input in both directions and selectively adjusting the SSM parameters, the Vision
Mamba block can learn rich spatiotemporal dependencies from fMRI data.

In addition, we adopt a temporal-first scanning mechanism as shown in Fig-
ure. 1c, where tokens are arranged so that time is treated as the leading dimen-
sion, followed by spatial dimensions. This design choice is motivated by neu-
robiological principles of coactivation in fMRI data, where consistent temporal
correlations among brain regions are critical for identifying functional connec-
tivity. By ensuring that the SSMs process the time dimension prior to spatial
dimensions, the Vision Mamba block can more effectively leverage long-range
temporal interactions alongside spatial dependencies from fMRI data.

Transformer block: The final stage of our framework leverages a multi-head
self-attention module to capture global dependencies. Let Q,K,V ∈ RL×Z rep-
resent the query, key, and value matrices, where L is the sequence length and Z
is the token dimensionality. The self-attention mechanism is:

Attention(Q,K,V) = Softmax
( QKT

√
dhead

)
V, (5)

where dhead is the dimension of each attention head. Although self-attention has
a quadratic computational complexity in L, our initial convolution and down-
sampling stages significantly reduce the sequence length, thereby making the
transformer block tractable for longer sequences.

3 Experimental Setup and Results

Datasets and preprocessing: We applied our method to resting-state fMRI
data from 6000 UKB participants [31] and 1075 HCP (S1200 release) partici-
pants [30], with UKB/HCP scan lengths of 490/1,200 volumes, spatial size of
91× 109× 91 in MNI space, and class balances of female participants at 50.86%
(UKB) and 51.16% (HCP). We used the preprocessed data provided with both
datasets [8,2], which follows the “fMRI volume” pipeline (bias field reduction,
skull stripping, cross-modality registration, and spatial normalization). To en-
sure stable network training, we applied global Z-score normalization, exclud-
ing background regions, which were filled with the minimum Z-score intensity
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[23]. We split the data into 70% for training, 15% for validation, and 15% for
testing. Our prediction targets were sex and cognitive intelligence scores: specif-
ically the “cognitive function” composite scores from HCP and the “fluid intel-
ligence/reasoning” scores from UKB. All regression targets were Z-score nor-
malized. In correlation-based approaches, we parcellate the data using the HCP
multimodal atlas [7] and compute Pearson correlations to capture functional
connectivity between brain regions.

Implementation details: We implemented our model in PyTorch and trained
it on NVIDIA L40S GPUs (48GB RAM). For all downstream tasks, we used the
same BrainMT architecture with 2 convolution blocks, 12 Mamba blocks, and
8 transformer blocks in sequence. The final output is obtained by applying nor-
malization to the Xcls token, followed by an MLP head. We randomly selected
200 frames from resting-state fMRI as input (justified in Table 3) and used de-
fault Mamba hyperparameters for the spatiotemporal layer (state dimension:
16, expansion ratio: 2). Training used a distributed data-parallel strategy with
AdamW under a cosine learning rate schedule over 20 epochs, with the first 5 as
a linear warm-up. Default values were used for learning rate (2e-4), weight decay
(0.05), and batch size (2), with early stopping based on validation loss. All hy-
perparameters were fixed using the validation set. For intelligence prediction, we
minimized mean squared error (MSE) and evaluated using MSE, mean absolute
error (MAE), and Pearson’s R. For sex classification, we optimized binary cross-
entropy loss and evaluated using balanced accuracy (B.Acc), standard accuracy
(Acc.), and the area under the receiver operating characteristic curve (AUROC).

Table 1. Comparisons with baseline models on HCP and UKB Datasets for cognitive
intelligence prediction. Values are given with their standard deviations. Lower MSE and
MAE, and higher R indicate better performance. Color convention: best, 2nd-best.

HCP UKBioBank
Method MSE MAE R MSE MAE R

XG-Boost [5] 1.004 0.22 0.831 0.15 0.14 0.05 1.049 0.19 0.811 0.14 0.01 0.03

BrainNetCNN [13] 0.981 0.21 0.799 0.10 0.21 0.02 1.003 0.23 0.801 0.16 0.01 0.01

BrainGNN [19] 0.946 0.02 0.791 0.10 0.28 0.04 0.995 0.13 0.794 0.03 0.06 0.10

BrainNetTF [11] 0.998 0.17 0.820 0.03 0.18 0.10 0.999 0.01 0.798 0.15 0.04 0.05

TFF [23] 0.957 0.10 0.798 0.02 0.27 0.08 0.998 0.02 0.795 0.11 0.04 0.03

SwiFT [16] 0.914 0.11 0.790 0.04 0.32 0.02 0.994 0.16 0.791 0.03 0.07 0.01

BrainMT 0.835 0.02 0.741 0.01 0.41 0.03 0.932 0.03 0.773 0.01 0.24 0.02

Quantitative results: To evaluate the effectiveness of BrainMT, we performed
a comprehensive analysis against state-of-the-art methods representing both
correlation-based and voxel-based approaches. For the correlation-based meth-
ods, we compared BrainMT with XGBoost [5] (our standard machine learning
baseline), BrainNetCNN [13], BrainGNN [19], and BrainNetTF [11]. For the
voxel-based methods, we used TFF [23] and SwiFT [16] as baselines. In each
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Table 2. Comparisons with baseline models for sex classification. Higher Acc., B.Acc,
and AUROC indicate better performance. Color convention: best, 2nd-best

HCP UKBioBank
Method Acc. B.Acc AUROC Acc. B.Acc AUROC

XG-Boost [5] 68.43 2.37 67.86 3.35 73.2 2.43 79.15 1.38 78.27 1.37 86.3 0.42

BrainNetCNN [13] 76.94 3.29 75.41 2.31 82.3 2.35 85.78 0.41 84.82 0.38 92.4 0.32

BrainGNN [19] 84.73 1.22 84.26 0.98 90.1 0.73 89.85 1.28 89.71 0.21 95.8 1.14

BrainNetTF [11] 82.87 2.19 81.55 3.16 89.3 2.09 87.92 1.23 87.38 1.15 95.1 0.71

TFF [23] 92.94 1.17 92.40 1.19 97.1 2.08 96.11 0.13 95.46 0.28 99.3 0.12

SwiFT [16] 93.06 1.08 92.61 1.26 97.5 1.95 97.45 0.11 97.69 0.05 99.4 0.13

BrainMT 96.28 0.02 96.15 0.03 98.7 0.06 97.91 0.09 97.77 0.08 99.2 0.04

case, we followed the original studies’ implementations, and all baselines were
hyperparameter-tuned on the validation split. Quantitative results obtained from
a repeated three-fold cross-validation are reported in Table. 1 for cognitive in-
telligence prediction and in Table. 2 for sex classification. On the intelligence
prediction task, BrainMT consistently outperformed all baseline methods by a
significant margin. Notably, most baseline methods yielded an MSE close to 1.0
in UKB (with targets normalized to have a variance of 1), suggesting that they
mostly predict the sample mean. In contrast, BrainMT achieved a 6.23% reduc-
tion in MSE on the UKB dataset and a 8.75% reduction on the HCP dataset.
For sex classification, BrainMT significantly outperformed all baselines on the
HCP dataset and matched the performance of SwiFT on the UKB dataset.
We further show that BrainMT is memory-efficient in Figure 1d, where GPU
memory usage and model parameters are compared with SwiFT across varying
frame counts, demonstrating that BrainMT is 35.8% more memory-efficient and
maintains linear complexity in T .

Table 3. Ablation studies on different number of time frames (A), architecture con-
figurations (B), number of Mamba (M) and Transformer (N) layers (C), visual mamba
blocks (D) and predicting functional connectivity correlations (E).

HCP UKBioBank
Exp Configuration MSE MAE R MSE MAE R

A T = 100 0.861 0.19 0.765 0.14 0.38 0.11 0.966 0.12 0.783 0.08 0.20 0.05

T = 300 0.870 0.08 0.767 0.11 0.37 0.06 0.971 0.15 0.785 0.16 0.19 0.13

B
No Transformer 0.865 0.02 0.766 0.13 0.37 0.05 0.962 0.16 0.782 0.07 0.20 0.01

No Conv 0.849 0.17 0.754 0.09 0.39 0.11 0.949 0.13 0.778 0.18 0.21 0.03

No Conv & Transf. 0.857 0.06 0.759 0.15 0.38 0.04 0.955 0.15 0.779 0.12 0.20 0.08

C Large (24M, 16N) 0.874 0.04 0.768 0.07 0.37 0.08 0.951 0.01 0.780 0.08 0.21 0.05

Small (6M, 4N) 0.883 0.14 0.772 0.10 0.36 0.16 0.965 0.04 0.783 0.07 0.20 0.09

D VMamba [22] 0.891 0.38 0.790 0.20 0.24 0.13 0.968 0.29 0.783 0.28 0.15 0.19

MambaVision [10] 0.913 0.21 0.801 0.25 0.07 0.01 0.979 0.10 0.787 0.23 0.09 0.18

E SwiFT 0.259 0.48 0.047 0.21 0.54 0.35 0.126 0.29 0.031 0.27 0.65 0.31

BrainMT 0.187 0.38 0.035 0.25 0.63 0.14 0.083 0.11 0.027 0.19 0.72 0.18
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Ablation studies: To assess the design choices of our framework, we conducted
extensive ablation experiments A−E on BrainMT for cognitive intelligence pre-
diction, summarized in Table 3. Exp A shows that our choice of T = 200 is
optimal, likely because fewer frames yield an insufficient signal-to-noise ratio,
whereas more frames increase the risk of overfitting. Exp B validates our hy-
brid design, where convolution extracts local spatial features, Mamba captures
sequential dynamics, and transformers encode global context. Exp C finds 12
Mamba layers and 8 transformers to be the best trade-off between complexity
and capacity. Exp D shows that replacing the bi-directional vision Mamba block
with alternatives (e.g., VMamba [22], MambaVision [10]) degrades performance,
emphasizing the importance of causal convolution for preserving fMRI’s tem-
poral order. Finally, Exp E demonstrates that our model surpasses SwiFT in
subject-level Pearson correlations by processing more frames at once, capturing
sequential brain dynamics more effectively.

Clinical biomarkers: To identify the brain biomarkers underlying BrainMT’s
phenotype predictions, we applied the Integrated Gradients (IG) algorithm [32]
to assign importance scores to input features. As shown in Figure 2, the IG maps
for cognitive intelligence reveal key contributions from regions within default
mode network (DMN) and frontoparietal network (FPN), including posterior
cingulate cortex (PCC), anterior cingulate cortex (ACC), precuneus (PCu), and
cuneus (Cu). These areas are well-established in the literature for their roles in
working memory, attention, decision-making, and visuospatial processing [28,24].
For sex prediction, the IG maps consistently highlight superior temporal gyrus
(STG), middle frontal gyrus (MFG), and PCu - findings that align with previous
neuroimaging studies on sex differences [27,33].

Fig. 2. Consistent interpretability maps from BrainMT model, highlighting regions
identified by Integrated Gradients for predicting cognitive intelligence and sex in HCP.

4 Conclusion

In this work, we introduced BrainMT, a novel hybrid deep network that cap-
tures the complex long-range temporal and spatial dependencies in volumetric



BrainMT 9

fMRI data. By integrating a bi-directional Mamba block and a lightweight trans-
former block, BrainMT efficiently handles high-dimensional time series data and
facilitates subject-level phenotypic characterizations. To the best of our knowl-
edge, this is the first hybrid approach combining Mamba and transformer mod-
ules to manage extensive temporal coverage in volumetric rs-fMRI. This frame-
work could serve as a general approach for prediction based on fMRI. In future
work, we plan to incorporate self-supervised training on large-scale neuroimag-
ing datasets to learn robust representations and further evaluate the model’s
generalizability to downstream tasks with limited data.
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