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Abstract. Apical periodontitis is a prevalent oral pathology that presents
significant public health challenges. Despite advances in automated diag-
nostic systems across various medical fields, the development of Computer-
Aided Diagnosis (CAD) applications for apical periodontitis is still con-
strained by the lack of a large-scale, high-quality annotated dataset. To
address this issue, we release a large-scale panoramic radiograph bench-
mark called "PerioXrays", comprising 3,673 images and 5,662 metic-
ulously annotated instances of apical periodontitis. To the best of our
knowledge, this is the first benchmark dataset for automated apical
periodontitis diagnosis. This paper further proposes a clinical-oriented
apical periodontitis detection (PerioDet) paradigm, which jointly in-
corporates Background-Denoising Attention (BDA) and IoU-Dynamic
Calibration (IDC) mechanisms to address the challenges posed by back-
ground noise and small targets in automated detection. Extensive exper-
iments on the PerioXrays dataset demonstrate the superiority of Peri-
oDet in advancing automated apical periodontitis detection. Addition-
ally, a well-designed human-computer collaborative experiment under-
scores the clinical applicability of our method as an auxiliary diagnos-
tic tool for professional dentists. The project is publicly accessible at
https://github.com/XiaochengFang/MICCAI2025_PerioDet.

Keywords: Computer-Aided Diagnosis · Panoramic Radiograph · Api-
cal Periodontitis Diagnosis · PerioXrays · PerioDet.

1 Introduction

Apical periodontitis is one of the most prevalent oral pathologies, affecting ap-
proximately 52% of adults worldwide [23]. Early and accurate diagnosis is essen-
tial for the effective management and planning of endodontic treatments to pre-
vent complications [8,14]. Panoramic dental radiography, a standard diagnostic
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(a) Representative examples (b) Example with manual annotations

Fig. 1: Apical periodontitis in panoramic radiograph from PerioXrays.

tool, provides a comprehensive view of dental structures, aiding in the detection
of apical periodontitis [6]. However, the accuracy of diagnosis can be affected by
the radiologist’s experience and fatigue, particularly during prolonged hours of
interpreting panoramic X-rays. This is especially problematic when identifying
subtle lesions, as illustrated in Fig. 1a, where apical periodontitis diagnosis re-
mains challenging due to the subtle or ambiguous characteristics of lesions, as
well as background noise such as low image quality, poor contrast, and artifacts.
Thus, it is crucial to develop an automated system for computer-aided diagnosis
of apical periodontitis from panoramic dental X-rays.

Recent advancements in medical image analysis have been greatly influenced
by the development of large-scale datasets [24,20,11,4,3] and deep learning tech-
niques [18,10,5]. Comprehensive datasets covering a wide range of medical con-
ditions and imaging modalities have emerged. For example, the ChestXray14
dataset [24], containing over 112,000 chest X-ray images, has facilitated deep
learning applications for detecting a variety of chest conditions. Similarly, the
MURA dataset [20], with 40,000 upper limb radiographs, has been pivotal in
developing models for diagnosing musculoskeletal diseases, especially bone and
joint abnormalities. The RSNA Pediatric Bone Age Challenge dataset [11], con-
sisting of 14,236 pediatric radiographs, aids in training models to assess bone age
in children, supporting accurate monitoring of growth and development. These
datasets have significantly advanced AI-driven diagnostic systems, demonstrat-
ing the potential of deep learning in condition detection, classification, and age
assessment. However, progress in AI-based diagnostics for apical periodontitis
detection remains limited, mainly due to the absence of large-scale datasets.

Technically, automated detection of apical periodontitis faces two key chal-
lenges: 1) Background noise: The detection of apical periodontitis is often
compromised by background noise arising from factors such as low image qual-
ity, poor contrast, and various artifacts in panoramic dental X-rays. These dis-
turbances obscure lesion details, making it difficult to distinguish pathological
changes from surrounding anatomical structures, thereby hindering accurate de-
tection. 2) Small targets: Apical periodontitis typically manifests as subtle,
localized changes at the root apex with relatively small dimensions in radio-
graphs. This characteristic poses a significant challenge for conventional image
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Fig. 2: Comprehensive dataset statistics and distribution about PerioXrays.

analysis methods, as precise identification techniques are required to detect even
the slightest structural variations.

To address the above issues, we have developed a large-scale, high-quality
annotated benchmark dataset, namely “PerioXrays” for automated apical pe-
riodontitis detection. The dataset comprises 3,673 panoramic X-rays with 5,662
meticulously annotated instances of apical periodontitis. Each annotation was re-
viewed by four experienced professional dentists to ensure accuracy and reliabil-
ity. Additionally, we propose a clinical-oriented apical periodontitis (PerioDet)
paradigm. To mitigate the impact of background noise in panoramic dental X-
rays, the Background-Denoising Attention (BDA) module is designed to refine
feature representations by modeling channel importance while establishing as-
sociations between target and scene features, effectively suppressing irrelevant
background interference. To address the challenge of detecting small lesions, we
propose the IoU-Dynamic Calibration (IDC) module, which employs an Adap-
tive IoU Threshold to dynamically adjust positive sample criteria based on lesion
size, ensuring a sufficient number of anchors for small lesions. A Dynamic Label
Assignment strategy refines anchor-ground truth matching, progressively adjust-
ing sample selection throughout training to enhance localization precision. Our
PerioDet paradigm, evaluated on the PerioXrays dataset, achieves state-of-the-
art performance and demonstrates clinical potential as an auxiliary diagnostic
tool for dentists in human-computer collaborative experiments.

2 PerioXrays Dataset Creation

2.1 Panoramic X-rays Collection

The PerioXrays dataset is a comprehensive collection of panoramic dental X-
rays obtained from multiple hospitals, including dental clinics and orthodontic
centers, gathered between 2022 and 2024. As shown in Fig. 2a and Fig. 2b,
the dataset covers a wide range of apical periodontitis cases across diverse de-
mographic groups, including various age ranges and genders. All images are
standardized to a resolution of 1333 × 800 pixels to ensure consistency while
minimizing information loss.
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Fig. 3: Illustration of our proposed PerioDet paradigm, which incorporates BDA
and IDC mechanisms for automated apical periodontitis detection accurately.

2.2 Apical Periodontitis Annotations

In the PerioXrays dataset, a custom annotation tool was used to delineate bound-
ing boxes around instances of apical periodontitis. Each bounding box was pre-
cisely adjusted to capture the true extent of the lesion, avoiding both overexten-
sion and undersizing. The annotation process followed comprehensive guidelines
based on established clinical diagnostic criteria for apical periodontitis [1,13,2].
Fig. 1b shows post-annotation examples from the dataset, highlighting the iden-
tified instances of apical periodontitis. To ensure accuracy, each image underwent
a rigorous multi-stage review by four experienced professional dentists.

2.3 Dataset Distribution Statistics

The PerioXrays dataset contains 3,673 panoramic dental X-ray images from
3,482 unique patients, with a total of 5,662 annotated instances of apical pe-
riodontitis. Fig. 2c shows the distribution of object counts and the area ratio
(AR) of labeled instances across the training set and test set. The AR metric
represents the proportion of an image occupied by apical periodontitis lesions,
indicating their size and spatial coverage. Detecting small lesions is particularly
challenging due to their limited visibility and spatial presence. The high preva-
lence of small objects (AR≤0.5%) underscores the need for advanced detection
algorithms to accurately localize apical periodontitis.

3 Methodology

3.1 Background-Denoising Attention

To mitigate the impact of background noise in panoramic dental X-rays, we
propose the Background-Denoising Attention (BDA) module, which enhances
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feature representations by modeling channel importance while simultaneously
capturing associations between target and scene features, effectively suppressing
irrelevant background noise.

As shown in Fig. 3, Pi represents the features in the top-down path in Feature
Pyramid Network(FPN) [15]. The BDA module generates a new feature map,
PBD
i , by weighting Pi using the importance vector zi and the similarity map Si.

The importance vector zi is computed as follows,

zi = Sigmoid (Conv1×1(Pi)) , (1)

which is designed to prioritize feature channels that capture rich spatial details
while suppressing background noise.

The similarity map Si captures the relationship between the target and scene
features, effectively suppressing irrelevant background interference. To compute
Si, two projection functions are employed to learn the target and scene features.

The projection of the target feature involves applying a series of operations
to Pi, including a 1 × 1 convolution for dimensionality reduction, followed by
Batch Normalization and ReLU activation to enhance non-linearity and stabilize
training. This process is formulated as follows,

P̃i = ReLU(BN(Conv1×1(Pi))). (2)

Additionally, a one-dimensional scene embedding vector u is computed to
capture the contextual information of the scene. This embedding vector is gen-
erated by applying a 1×1 convolution operation to the feature map C5, effectively
projecting the scene features into a compact representation while preserving es-
sential contextual details. The computation of u is expressed as follows,

u = Conv1×1(C5). (3)

With the refined feature map P̃i and the scene embedding vector u, the
similarity map Si is calculated as follows,

Si = Sigmoid(P̃i · u). (4)

Based on the above analyses, the final output is computed as follows,

PBD
i = (1 + zi) · Pi ⊙ Si. (5)

3.2 IoU-Dynamic Calibration

To address the problem posed by small targets in apical periodontitis detection,
the IoU-Dynamic Calibration(IDC) module mainly benefits from the Adaptive
IoU Threshold and Dynamic Label Assignment mechanisms.

Adaptive IoU Threshold. Traditional IoU thresholds struggle to capture
small lesions due to their sensitivity to positional deviations[7]. To address this
limitation, we propose an Adaptive IoU Threshold that dynamically adjusts the
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positive sample thresholds based on the object’s area, ensuring sufficient anchors
for small lesions. The Adaptive IoU Threshold is defined as follows,

Trp = max(0.25, 0.2 + 0.15 ·
(√

w · h/As

)λ

), (6)

where w and h denote the width and height of the object, and As represents
the minimal area definition which is adjusted for different datasets. Trp is the
reference threshold for positive samples, while λ controls the growth rate of Trp.

Dynamic Label Assignment. To enhance label assignment for small le-
sions, we propose a Dynamic Label Assignment that employs Dynamic IoU(DIoU)
to adaptively adjust the sample selection during training, refining the matching
process between anchors and ground truth (GT). DIoU is defined as follows,

DIoU = α ·AIoU + (1− α) ·RIoU − (1− α) · |AIoU −RIoU |γ , (7)

where AIoU represents the IoU of anchor and GT, RIoU represents the IoU of
regression box and GT, and α and γ are hyperparameters used for weighting.

Our Dynamic Label Assignment strategy follows the following procedure.
First, we calculate Trp based on Eq. 6. Subsequently, the DIoU of each anchor
is computed during label assignment, and anchors are designated as positive
samples when DIoU is greater than Trp. To ensure the stability of training,
the influence of RIoU on sample selection is gradually increased with training
iterations. The adjustment of α at each stage follows the criteria:

α(p, α0) =


1, 0 ≤ p < 0.1(

α0−1
0.5−0.1

)
(p− 0.1) + 1, 0.1 ≤ p < 0.5

α0, p ≥ 0.5

(8)

where p = epoch
epochs , with epoch representing the current training epoch and epochs

the total number of epochs. The hyperparameter α0 controls α.

4 Experiments

4.1 Experiment Setup

To evaluate our method, we compare various object detection baselines on the
PerioXrays dataset, including CNN-based and Transformer-based approaches.
The dataset was randomly split into a training set of 3,000 images and a test
set of 673 images, with the division made at the patient level to ensure that
all images from a single patient were assigned to the same set. We use Average
Precision (AP) [16] as the primary metric, along with AP50 and AP75 at IoU
thresholds of 0.5 and 0.75. Objects are categorized into small (S), medium (M),
and large (L) sizes for detailed performance analysis. During training, we used
AdamW as the optimizer with a batch size of 2, a 1× schedule (12 epochs), an
initial learning rate of 2e-4, and a weight decay of 0.0001. All baseline models
were trained with a ResNet-50 backbone for fair comparison.
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Table 1: Comparison with detection approaches on the PerioXrays.
Models Methods Ref. AP AP50 AP75 APS APM APL

CNN

Faster RCNN [21] NIPS’15 46.1 76.4 50.1 23.6 44.7 53.1
ATSS [28] CVPR’20 47.2 80.2 50.1 33.0 46.3 54.4
YOLOX [9] CVPR’21 46.7 79.5 48.4 28.3 45.2 55.1
Sparse RCNN [22] CVPR’21 47.0 80.1 49.5 36.9 45.1 54.3
RFLA [25] ECCV’22 47.5 80.3 50.6 36.4 46.1 55.0
CFINet [26] ICCV’23 47.7 80.6 51.0 37.2 46.4 55.6

Transformer

Deformable-DETR [29] ICLR’20 38.4 75.8 35.1 21.7 36.6 46.6
Conditional-DETR [19] ICCV’21 42.6 78.4 41.0 23.3 41.1 49.7
DAB-DETR [17] ICLR’22 44.0 78.5 45.0 33.4 43.1 50.0
DINO [27] ICLR’23 48.9 81.2 51.3 20.4 47.6 56.9
Co-DINO [30] ICCV’23 49.9 81.5 53.4 36.8 48.5 57.7
Salience-DETR [12] CVPR’24 50.3 81.7 53.7 37.0 48.2 57.8
Ours - 53.5 84.2 55.6 42.3 50.9 58.7

Table 2: Ablation studies.
BDAIDCAPAP50AP75APSAPMAPL

✗ ✗ 49.9 81.5 53.4 36.8 48.5 57.7
✓ ✗ 51.7 83.1 54.7 40.6 49.8 58.0
✗ ✓ 52.3 83.5 55.2 41.1 50.3 58.3
✓ ✓ 53.5 84.2 55.6 42.3 50.9 58.7

Table 3: Diagnostic comparison.
Methods w/o PerioDet w PerioDet

Precision 73.1% 92.5%(19.4% ↑)
Recall 74.3% 96.1%(21.8% ↑)

Efficiency ≈28 s/img ≈13 s/img(15s↓)

4.2 Comparisons with State-of-The-Arts

We evaluate the performance of our method on the PerioXrays dataset, where it
surpasses all baseline approaches. As shown in Table 1, PerioDet achieves a 5.8%
improvement in AP compared to leading CNN-based models such as CFINet
(53.5% vs. 47.7%) and a 3.2% improvement over state-of-the-art Transformer-
based models like Salience-DETR (53.5% vs. 50.3%). Notably, PerioDet excels
in detecting small lesions, with a 5.1% improvement in APS .

4.3 Ablation Studies and Parameter Analysis

In our ablation studies, we systematically assess the contribution of each com-
ponent in the PerioDet method using the PerioXrays dataset to validate its ef-
fectiveness. As shown in Table 2, the results demonstrate that all modules work
synergistically, reinforcing each other and confirming the overall effectiveness of
the method. Additionally, we analyze the impact of three critical hyperparam-
eters, λ, α0, and γ, as defined in Eq. 6, Eq. 7 and Eq. 8. Fig. 4 shows that our
PerioDet achieves optimal performance with λ = 0.55, α0 = 0.6, and γ = 1.5.
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Fig. 4: Parameter analysis (%) on the PerioXrays dataset.
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4.4 Human-Computer Collaborative Experiment

We designed a novel human-computer collaborative experiment to evaluate the
clinical applicability of our method as an auxiliary diagnostic tool. Six profes-
sional dentists participated, including two junior, two mediate, and two senior
professionals. None had prior exposure to the data, ensuring an unbiased evalua-
tion. We randomly selected 100 panoramic X-ray images from PerioXrays as the
test set, and participants made two consecutive diagnostic judgments for each
image. As shown in Table 3, these results highlight the clinical applicability of
PerioDet, demonstrating its effectiveness in real-world medical diagnostics.

4.5 Visualization Results

We visualize detections and heatmaps. As shown in Fig. 5, PerioDet accurately
identifies apical periodontitis and effectively localizes the lesions. The attention
distribution further emphasizes PerioDet’s ability to capture relevant features,
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highlighting its enhanced sensitivity to regions of interest. Additionally, Fig. 6
demonstrates that PerioDet achieves higher confidence scores and successfully
detects apical periodontitis that other models miss.

5 Conclusion

In this paper, we release a large-scale panoramic radiograph benchmark called
"PerioXrays". Moreover, we propose a clinical-oriented apical periodontitis de-
tection (PerioDet) paradigm which jointly incorporates Background-Denoising
Attention (BDA) and IoU-Dynamic Calibration (IDC) mechanisms to address
the challenges posed by background noise and small targets. Extensive experi-
ments on the PerioXrays dataset, along with a well-designed human-computer
collaborative experiment, establish a strong foundation for automated apical
periodontitis detection in dental healthcare.
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