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Abstract. Medical image segmentation is essential for diagnosis and
treatment planning, however fully supervised deep learning methods re-
quire expensive pixel-level annotations. Weakly supervised semantic seg-
mentation (WSSS) using class activation mapping (CAM) reduces this
burden by utilizing image-level labels. While binary CAM has shown
promising results, multiclass CAM remains under-explored and suffers
from reduced accuracy due to weak localization signals. To address this,
we propose a novel approach that improves multiclass WSSS by lever-
aging binary CAM to guide multiclass CAM, enhancing feature repre-
sentation, inter-class boundary segmentation and prediction accuracy.
Additionally, we introduce novel inter-class separability loss and agree-
ment loss designed to enhance multiclass CAM learning by enforcing
spatial consistency and class separability. Experimental results on brain
tumor segmentation (BraTS) datasets demonstrate that our approach
significantly enhances multiclass weakly supervised segmentation accu-
racy, outperforming existing methods. Our code is available at https:
//github.com/Vivek-Dhamale/WSS-Interclass-Sep.
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1 Introduction

Accurate segmentation of structural anomalies on medical imaging data is an es-
sential step in biomarker quantification and disease severity assessment. Recent
advances in deep learning have produced promising results for several fully su-
pervised binary and multiclass segmentation methods. However, these methods
require pixel-level labels for training, which are time consuming, labor intensive,
and costly to obtain because of the specialized medical knowledge required for
accurate labeling [13].

Weakly supervised segmentation (WSS) methods address this issue by us-
ing partial (e.g. scribbles [23], points [5, 6], bounding boxes [12, 17, 19, 21] or
lower-level labels (e.g., image-level labels [8]), thereby minimizing the need for
detailed pixel-level annotations and making the segmentation process more ef-
ficient. Among the WSS methods, class activation mapping (CAM)-based ap-
proaches generate heat maps highlighting the most discriminative regions in an
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image and are particularly effective for identifying pathological structures using
only image-level labels.

Related work. Existing methods include pixel-wise approaches [1, 2] that
employ pixel-wise loss functions or local patch similarity constraints, image-
wise methods [11, 25] that enforce global consistency, and cross-image tech-
niques [9, 24] that leverage inter-image relationships to improve segmentation
performance [10]. In medical imaging, most CAM-based methods have been
developed for single-class segmentation, with limited work extending them to
multiclass settings [7, 16]. In a multiclass setting, the above CAM-based meth-
ods struggle with label co-occurrence, leading to similar activations for frequently
coexisting classes and spatial adjacency (co-location) causing overlapping activa-
tions in closely located structures [16]. WS-MTST [7] introduces an aggregation
loss to promote spatial compactness in weakly supervised multi-label tumor seg-
mentation, leveraging transformer-based architectures. While effective for con-
tiguous tumor regions, this design assumes spatial continuity within each class.
Among the CAM-based methods, AME-CAM [8] employs a multi-exit classi-
fication network to extract activation maps at various resolutions, which are
then hierarchically aggregated using an attention mechanism to generate high-
resolution binary CAMs. However, when directly extended to multiclass settings,
it fails to produce mutually exclusive activations, leading to significant overlap
in segmentation because multiclass CAMs are generated independently, with the
lack of mechanism to separate between classes. For instance, while foreground-
background separability loss [9] has been proposed, it does not enforce separation
between multiple foreground classes.

Contributions. In this work, to address the limitations of CAM in gener-
ating mutually exclusive activations, we propose a multiclass CAM approach
that leverages binary CAMs as guidance to enhance the generation of multiclass
CAMs, improving class localization.To address the challenge of overlapping ac-
tivations in multiclass lesions, we introduce two novel loss functions: inter-class
separability loss, which reduces overlap in CAMs for these regions, and agree-
ment loss, which ensures consistency between binary and multiclass CAMs. We
also evaluate our method against state-of-the-art CAM techniques in extracting
multiclass segmentation results from classification networks of medical imaging
data with multiclass co-located, co-occurring labels.

2 Methodology

Problem formulation: Let X ⊂ R be the image space ∀ xi ∈ X and the
corresponding image-level label space be Y ∀ yci ∈ Y, thus making the training
data {X ,Y}. Let c = 1...C, where C ≥ 2 be the number of co-occurring classes
in anomalous lesions. Given the multiclass segmentation problem, the objective
is to determine accurate multiclass CAMs for weakly supervised segmentation
of lesions with co-occurring C classes.
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The proposed method involves training a classification model using image-
level labels yci and multiclass CAM aggregation to combine CAM maps from
multiple layers of the model. Here, we also propose a novel refinement strategy
for multiclass CAMs with the guidance of the binary CAMs. Additionally, since
using class-specific loss alone [24] only provides separability between foreground
and background, we also introduce inter-class separability and agreement losses
to enforce the mutual exclusion among foreground classes. The overall architec-
ture of the proposed method is shown in Fig. 1.

2.1 Multiclass Classification using image-level labels

We used 2D ResNet-18 architecture to enable multiclass classification since the
ResNet architecture has shown promising results [8]. We scale the model with
multi-exit training to handle multiple classes, where we introduce internal classi-
fiers after each residual block, with the number of classifiers equal to the number
of classes C. These classifiers generate activation maps F (l,c)(x) at different lay-
ers l for class c. At each residual block, predictions are obtained by applying
Global Average Pooling (GAP) to the activation maps, as defined by:

ŷ(l,c) = GAP
(
F (l,c)(x)

)
(1)

where F (l,c)(x) represents the feature map of class c from the l-th residual block.
We trained the classification model using the cross-entropy loss Lcls,

Lcls =
∑
l

∑
c

wi · Lce

(
ŷ(l,c), y(c)

)
(2)

where y(c) is the image-level ground truth label for class c and wl is a weight
factor for loss at each block l. To enhance feature representation, we pretrain
the classifier using a multi-label supervised contrastive learning method [26].

2.2 Multiclass CAM Aggregation Network

While we obtained the activation maps F (l,c)(x) of different resolutions from dif-
ferent layers l, they need to be aggregated into mutually exclusive class-specific
CAMs. Hence, we upsample F (l,c)(x) from different layers l to original dimen-
sions so that we get l activation maps for each class c, to be provided as input
for the aggregation module (indicated in Fig. 1). Since our aim is not only to
make the individual foreground classes mutually exclusive, but also to separate
all foreground classes from background, we use the binary CAM to guide for the
latter task. Hence, we generate binary CAMs Fbin

ag for the whole lesion (by train-
ing the aggregation model [8] for combined foreground classes vs background), to
obtain a general lesion localization map. These binary CAMs serve as guidance
for obtaining final aggregated mutually exclusive multiclass CAMs (Fc

ag). The
process of binary-guided multiclass CAM aggregation is explained below.
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Fig. 1. The overall architecture consists of two main components: (1) a Multiclass
Multi-Exit Classifier (left), which processes the input and generates intermediate fea-
ture representations, and (2) a Multiclass CAM Aggregation Network (right) with
binary CAM guidance, which refines and combines class activation maps.

We refine the layer-wise multiclass activation maps F (l,c)(x) using the bi-
nary CAM Fbin

ag . Specifically, for each residual block l, the extracted multiclass
activation map F l,c is modulated using Fbin

ag as follows:

F̃ (l,c) = F (l,c) ⊙Fbin
ag (3)

where ⊙ denotes element-wise multiplication. This ensures that the multi-
class activation maps remain aligned with the overall lesion localization while
improving the spatial consistency of class-specific regions using inter-class sepa-
rability loss and agreement loss described later in Sec. 2.3. Unlike WS-MTST [7],
this strategy avoids the spatial compactness constraint, potentially allowing flex-
ibility in representing multiple disconnected regions of the same class.

To adapt the attention mechanism for the multiclass setting, we modify the
attention network A(·) (proposed in [8]) to assign class-specific pixel-wise im-
portance scores S̃

(l,c)
(jk) to each activation map. Unlike the binary setting, where

a single class attention score is learned, our modified attention network assigns
separate attention scores to each class. Specifically, the network takes as input
the image x, masked by the multiclass activation maps, and computes the cor-
responding importance scores as follows:

S̃
(l,c)
(jk) = A

([
x⊙N

(
F̃ (l,c)(x)

)]L
l=1

)
(4)

where [·]Ll=1 denotes channel-wise concatenation across residual layers l, N(·)
normalizes activation maps to the range [0, 1], and ⊙ represents element-wise
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multiplication. This modification ensures that the attention network learns dis-
tinct spatial importance patterns for each class, enabling improved localization
and separation in the multiclass setting. Thus, the final aggregated class-specific
activation map, Fc

ag, is obtained as Fc
ag =

∑
l S̃

(l,c)
(jk) ⊙ F̃ (l,c).

2.3 Loss Functions for Multiclass CAM Learning

To ensure effective multiclass activation map learning, we employ three loss
functions as explained below.

Class-Specific Separation Loss : We extend the foreground-background separa-
bility loss [24] (Lpos, Lneg) for multiclass setting by applying it to each class
separately, while maintaining class-specific foreground consistency. It is formu-
lated as:

Lc =
∑

c

(
Lneg(v

s
f,c, v

t
b,c) + Lpos(v

s
f,c, v

t
f,c) + Lpos(v

s
b,c, v

t
b,c)
)

(5)

Intuitively, the positive loss encourages consistency between similar regions
(e.g., foreground–foreground or background–background), while the negative loss
enforces separation between foreground and background features for each class.

Here vsf,c and vtb,c denote the foreground and background feature representa-
tions for class c in the s-th and t-th instances (images), respectively and com-
puted as below.

vsf,c = Fc
ag ⊙ P(x), vsb,c = (1−Fc

ag)⊙ P(x) (6)

where P(·) represents the projection network (implemented as a 1 × 1 con-
volution), which maps the input three-channel image x to a single-channel rep-
resentation (indicated by features in Fig. 1) for downstream processing.

Inter-Class Separability Loss : To ensure class-wise distinctiveness, we minimize
the similarity between the foreground features of different classes:

Lsep =
∑
c ̸=c′

Lneg(v
s
f,c, v

t
f,c′) (7)

This constraint prevents overlapping feature representations between different
classes, promoting better class separation.

Agreement Loss : To align the aggregated multiclass activation maps with the
binary activation map, we introduce an agreement loss based on the Binary
Cross-Entropy (BCE) function:

Lagree = BCE

(
max

c
Fc

ag,Fbin
ag

)
(8)
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The term maxc Fc
ag selects the most confident class activation at each pixel,

ensuring consistency between the multiclass and binary segmentation outputs.
Hence, the total loss function is defined as a weighted sum of the above

components:
L = λcLc + λsepLsep + λagreeLagree (9)

where λc, λsep, and λagree are hyperparameters controlling the relative impor-
tance of each loss component. Once the CAMs are obtained, we apply a thresh-
olding operation with binary guidance, ensuring that the multiclass segmentation
mask remains constrained within the binary map.

3 Experiment Setup

Dataset details. We used brain tumor segmentation (BraTS) 2020 dataset
[3, 4, 18], with multimodal MRI scans from 369 patients across four modalities:
FLAIR, T1, T1ce, and T2 being publicly available, of which we use T1ce, T2,
and FLAIR. It provides ground-truth annotations for edema, enhancing tumor
core, and nonenhancing tumor core. For our study, we merge the enhancing and
non-enhancing tumor regions into a single core class. The training:validation:test
split is 237:59:73 respectively. This dataset effectively captures the challenges of
spatial co-location and co-occurrence of core and edema, making it well-suited
for evaluating the proposed method.

Implementation details. The multiclass classifier was pretrained with Mul-
SupCon [26] on the training set. Both classification and aggregation models are
optimized using Adam Optimizer [15], with learning rates of 5e−4 and 1e−3 re-
spectively. Training is done for 50 epochs with model checkpointing, saving the
best models based on validation loss. We threshold the binary and multiclass
CAMs at 0.4 and 0.5 respectively. The loss weights used in the total loss func-
tion are set as λc = 1, λsep = 1, and λagree = 5. All the above parameters are set
empirically. Experiments are conducted on an Intel i9-10980XE CPU, 128 GB
RAM, and two NVIDIA RTX A6000 GPUs (each with 48 GB memory).

Evaluation metrics. We evaluate the final segmentation performance using
Dice score, IoU, and 95th percentile of Hausdorff distance (HD95).

3.1 Experiments and results

Comparison with state-of-the-art methods. We compare our method with
existing CAM-based methods: GradCAM [20], LayerCAM [14], ScoreCAM [22],
and state-of-the-art method AME-CAM [8]. For AME-CAM, we train the classi-
fier and the aggregation model separately for each class to adapt to the multiclass
problem. Existing CAM-based methods result in poor segmentation quality with
imprecise boundary localization, as reflected by their lower Dice (<0.700) and
IoU scores (<0.700) and higher HD95 values (>100). Notably, these methods
tend to produce similar CAMs for both classes, leading to significant overlap in
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the predicted class foregrounds. Although AME-CAM demonstrates improved
spatial accuracy, CAM maps for edema still tend to propagate into the core
region, as indicated in Fig. 2 (fourth row; magenta color shows false positive),
leading to overlap between different class foregrounds. In contrast, our method
generates mutually exclusive core and edema foreground CAMs, achieving the
best segmentation performance across nearly all metrics, ensuring spatially con-
sistent and mutually exclusive predictions.

Fig. 2. Class activation maps and segmentation outputs for core and edema across
different methods for two sample cases (left to right). Each row represents a different
method, while columns depict the generated CAMs and segmentation masks. False
negatives (Blue), true positives (Green), and false positives (Magenta) illustrate that
our method achieving better separation between core and edema while reducing false
predictions, compared to other methods including AME-CAM.

Also, a key drawback of AME-CAM is the need to train separate classifiers
and aggregation models for each class, making it computationally expensive
and less scalable for datasets with more classes. In contrast, our method uses
only two multi-exit classifiers (multiclass and binary) with an additional 1×1
convolutional layer (each for additional class), enabling efficient handling of extra
classes without significant computational overhead.
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Table 1. Comparison of segmentation performance metrics across different methods
for Core and Edema regions.

Method
Dice IoU HD95

Core Edema Core Edema Core Edema
GradCAM [20] 0.623 ± 0.471 0.336 ± 0.444 0.616 ± 0.476 0.322 ± 0.450 126.080 ± 173.336 170.295 ± 158.429
LayerCAM [14] 0.617 ± 0.475 0.339 ± 0.441 0.611 ± 0.480 0.323 ± 0.449 127.209 ± 172.914 164.188 ± 160.511
ScoreCAM [22] 0.617 ± 0.475 0.337 ± 0.442 0.611 ± 0.480 0.322 ± 0.449 127.970 ± 172.970 163.568 ± 160.304
AME-CAM [8] 0.671 ± 0.421 0.711 ± 0.364 0.643 ± 0.438 0.663 ± 0.399 50.180 ± 116.223 34.647 ± 93.349
Our Method 0.757 ± 0.107 0.742 ± 0.088 0.732 ± 0.101 0.691 ± 0.085 55.429 ± 43.675 29.598 ± 16.961

Ablation studies. Table 2 shows the effect of addition of individual loss
components on the proposed method’s performance. Paired two-tailed t-test were
performed in the ablation study to determine the significance of improvement
with addition of each loss component.

Adding Lsep to the baseline Lc helps in better separating the core and edema
classes, as reflected in the statistically significant improvement in Dice and IoU
for the edema class. However, this separation introduces slight boundary incon-
sistencies, leading to a significant increase in HD95 for the tumor core class,
indicating reduced spatial precision. When Lagree is further incorporated, the
segmentation quality improves across all metrics. This loss ensures that the pre-
dicted segmentation maps remain constrained within the binary whole tumor
mask, leading to significantly higher Dice and IoU scores while also refining
boundary localization, as shown by the reduction in HD95 for the tumor core
and edema classes. Overall, the combined effect of separating the class regions
(Lsep) and constraining them within the whole tumor region (Lagree) results in
the most accurate and spatially consistent segmentation.

Table 2. Ablation study on different loss configurations, evaluating segmentation per-
formance for Core and Edema regions. Statistical significance is assessed row-wise,
comparing each loss configuration to the previous row using paired, two-tailed t-test,
with */** indicating significant improvement with p-value < 0.05/p-value < 0.01.

Loss Config.
Dice IoU HD95

Core Edema Core Edema Core Edema
Lc 0.732 ± 0.092 0.716 ± 0.084 0.712 ± 0.090 0.669 ± 0.081 55.248 ± 41.831 31.164 ± 22.943
Lc + Lsep 0.740 ± 0.114 0.702 ± 0.085** 0.719 ± 0.107 0.656 ± 0.082* 61.204 ± 46.101** 32.000 ± 23.010
Lc + Lsep + Lagree 0.757 ± 0.107** 0.742 ± 0.088** 0.732 ± 0.101* 0.691 ± 0.085** 55.429 ± 43.675** 29.598 ± 16.961*

4 Conclusions

In this work, we propose an effective multiclass CAM method with binary CAM
guidance for better separation of CAMs for the core and edema regions, ensuring
spatially consistent and mutually exclusive weakly-supervised predictions. We
introduce novel inter-class separability loss and agreement loss to improve spa-
tial precision and ensure mutually exclusive segmentation of class foregrounds.
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Compared to existing CAM-based methods, such as AME-CAM, our approach
demonstrates superior segmentation performance with better spatial precision
and reduced class overlap. Additionally, our method is computationally efficient,
offering improved scalability for datasets with multiple classes. Future work in-
cludes extensive validation on additional datasets, analysis of performance with
more foreground classes, and evaluation of computational efficiency. Other future
directions involve adapting the proposed method across various domains (e.g.,
modalities, scanners) and lesion types, with potential applications in open-world
anomaly detection problems.
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