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Abstract. Contrast-enhanced magnetic resonance images (CEMRIs) pro-
vide valuable information for brain tumor diagnosis and treatment plan-
ning. However, CEMRI acquisition requires contrast agent injection,
which poses problems such as health risks, high costs, and environmen-
tal concerns. To address these drawbacks, researchers have synthesized
CEMRIs from non-contrast magnetic resonance images (NCMRIs) to
remove the need for contrast agents. However, CEMRI synthesis from
NCMRIs is highly ill-posed, where false positive and false negative en-
hancement can be produced, especially for brain tumors. In this study, we
propose a deformation-driven diffusion model (D3M) for CEMRI synthe-
sis with brain tumors from NCMRIs. Instead of modeling enhancement
errors as intensity errors, we formulate them as incorrect interpretation
of tumor subcomponents, where enhanced tumors are misinterpreted as
non-enhanced tumors and vice versa. In this way, the enhancement can
be geometrically corrected with spatial deformation. This reduces the
difficulty of CEMRI synthesis, as the intensity error is usually large to
correct whereas the geometry correction is relatively small. Specifically,
we first introduce a multi-step spatial deformation module (MSSDM) in
D3M. MSSDM performs image deformation to adjust the enhancement,
displacing enhanced regions to remove false positive and false negative
enhancement. Moreover, as the denoising process of diffusion models is
stepwise, MSSDM is applied at these multiple diffusion steps. Second, to
further guide the spatial deformation, we incorporate an auxiliary task
of segmenting the enhanced tumor, which aids the model understand-
ing of contrast enhancement. Accordingly, we introduce a dual-stream
image-mask decoder (DSIMD) that jointly produces intermediate en-
hanced images and masks of enhanced tumors. Results on two public
datasets demonstrate that D3M outperforms existing methods in CEMRI
synthesis.

Chuyang Ye is the corresponding author. Email: chuyang.ye@bit.edu.cn.
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1 Introduction

Contrast-enhanced magnetic resonance images (CEMRIs) provide valuable in-
formation for brain tumor diagnosis and treatment planning [5,22]. However,
CEMRI acquisition requires injection of contrast agents, which brings concerns
about patient health risks [15,25], high economic costs [27], and environmental
harm [2,8]. Given these concerns, removal of the need for contrast agents while
preserving image contrast for disease assessment is highly desirable.

To address the problem above, researchers have synthesized CEMRIs from
non-contrast magnetic resonance images (NCMRIs), such as T1-weighted, T2-
weighted, and FLAIR images [6,17,23,26,27]. For example, Preetha et al. [17]
propose a 3D convolutional neural network (CNN) based on U-Net and a con-
ditional generative adversarial network (GAN) method inspired by Pix2Pix [10]
to synthesis CEMRIs from NCMRIs. Gui et al. [6] propose a conditional auto-
regressive vision model for the synthesis problem. In recent years, diffusion
models have achieved great success in medical image synthesis with realistic
synthesis results [16,24,26,29]. State-of-the-art diffusion models [14,18] can be
directly applied to CEMRI synthesis, and they can also be adapted specifically
for CEMRI synthesis. For example, Xu et al. [26] propose a diffusion model based
on common-unique decomposition for liver CEMRI synthesis, and the method
outperforms other non-diffusion-based synthesis models.

Compared with other image synthesis tasks, CEMRI synthesis from NCM-
RIs remains highly ill-posed as NCMRIs only provide ambiguous evidence about
the enhanced regions [6]. Consequently, existing methods, including those based
on diffusion models, still produce noticeable false positive and false negative en-
hancement results, where high intensities are produced for non-enhanced regions
and low intensities are produced for regions that should be enhanced, respec-
tively. The erroneous enhancement is particularly severe for tumor regions, where
these models fail to capture the intricate morphology of tumor subcomponents.

In this study, we propose a deformation-driven diffusion model (D3M) for im-
proved CEMRI synthesis with brain tumors from NCMRIs. Instead of modeling
enhancement errors as intensity errors, we formulate them as incorrect interpre-
tation of tumor subcomponents, where enhanced regions are misinterpreted as
non-enhanced ones and vice versa. Such reformulation allows the enhancement
to be geometrically corrected via spatial deformation. This geometric perspective
reduces the difficulty of CEMRI synthesis, as intensity errors for enhancement
are typically large and challenging to correct, whereas geometric correction is
relatively small and more manageable. Specifically, in D3M we first introduce a
multi-step spatial deformation module (MSSDM). MSSDM deforms the synthe-
sized image to adjust the enhancement, displacing enhanced regions to correct
false positive and false negative enhancement. Unlike traditional post-processing
deformation methods, MSSDM is directly embedded within the denoising pro-
cess and alternates with image generation at different diffusion steps. This tight
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Fig. 1. An overview of the network architecture of D3M.

integration not only prevents severe error accumulation that is difficult to cor-
rect, but also promotes the joint optimization of image generation and geo-
metric correction. Second, to further guide the spatial deformation, we incor-
porate an auxiliary task of segmenting the enhanced part of the tumor, which
improves the model understanding of contrast enhancement. To obtain the seg-
mentation, we introduce a dual-stream image-mask decoder (DSIMD) in D3M,
which jointly produces intermediate enhanced images and masks of enhanced tu-
mors. These masks are used by MSSDM for spatial deformation. D3M is trained
by minimizing a standard weighted mean squared error loss with deformation
smoothness regularization. Experiments were performed on two public datasets
for validation, and the results demonstrate that our method outperforms exist-
ing approaches, especially for brain tumor regions. The codes of our method are
available at https://github.com/PangHaowen-hub/D3M.

2 Methods

2.1 Problem Formulation and Method Overview

We aim to train a synthesis model to synthesize CEMRIs (contrast-enhanced T1-
weighted images) with brain tumors from NCMRIs, including commonly used
T1-weighted, T2-weighted, and FLAIR images. Moreover, for training data we
use auxiliary information of annotations of enhanced tumors to guide the model

https://github.com/PangHaowen-hub/D3M
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training. Once training is completed, only the NCMRIs are needed for inference,
without requiring enhanced tumor masks.

As the intensity errors of false positive and false negative enhancement can
be large, we rethink them as misinterpretation of enhanced tumors, so that the
enhancement can be corrected geometrically with spatial deformation. The ge-
ometric correction allows more effective suppression of enhancement errors, as
the required displacement is usually small and easier to estimate. Based on this
formulation, we develop D3M, a diffusion model driven by spatial deformation,
for CEMRI synthesis with brain tumors. An overview of D3M is shown in Fig. 1,
where we propose two major components, MSSDM and DSIMD. MSSDM is re-
sponsible for performing the deformation that corrects enhancement at each dif-
fusion step, whereas DSIMD produces enhanced images and masks of enhanced
tumors that guide MSSDM. The detailed designs are described below.

2.2 Training and Inference Procedures of D3M

Like typical diffusion models [29], D3M processes 2D slices and concatenates
them into 3D volumes of CEMRIs. The geometric correction is integrated in
D3M for both training and inference procedures. The training stage learns the
denoising process and geometric correction, and the inference stage uses multiple
steps to gradually synthesize the CEMRI with the help of geometric correction.

Training. The training procedure consists of both forward and reverse pro-
cesses. In the forward process, the noisy CEMRI xt and noisy enhanced tumor
mask mt at the t-th step are given by:

xt =
√
ᾱt · x0 +

√
1− ᾱt · ϵi,t and mt =

√
ᾱt ·m0 +

√
1− ᾱt · ϵm,t, (1)

where x0 and m0 are the original CEMRI and mask, respectively, ϵi,t and ϵm,t

are independent images of zero-mean, unit-variance Gaussian noise, and ᾱt =∏t
s=1 αs with αs representing the image noise schedule parameters following [3].
In the reverse process, at the t-th step, instead of directly estimating the noise

or denoised image, D3M follows [19] and learns to estimate the image velocity
term vi,t and mask velocity term vm,t, which are defined as

vi,t =
√
ᾱt · ϵi,t −

√
1− ᾱt · x0 and vm,t =

√
ᾱt · ϵm,t −

√
1− ᾱt ·m0. (2)

The estimation is achieved with an encoder E(·) and DSIMD D(·):

v̂i,t, v̂m,t = D(E(xt,mt, c, t), t), (3)

where v̂i,t and v̂m,t are the estimated image and mask velocity, respectively,
and c is the conditional images (NCMRIs). Compared to direct estimation of
the noise or denoised image, estimating the velocity terms enables the model
to learn a more efficient and stable reverse diffusion process, thereby improving
both the performance and stability of the model [19]. Note that E(·) and D(·) are
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shared among diffusion steps, and their detailed design will be presented later
in Section 2.3; also, mask velocity is estimated in addition to image velocity, as
it is incorporated to guide model training.

Like standard diffusion models, v̂i,t and v̂m,t contain false positive and false
negative enhancement. Thus, we propose to further incorporate geometric cor-
rection applied to v̂i,t and v̂m,t in the reverse process. To this end, we design
MSSDM to estimate the deformation field that displaces the enhanced regions
for correction. As the enhanced tumor mask is less sensitive to noise than the
velocity terms and intensity images, MSSDM takes the current intermediate
segmentation mask m̂

(t)
0 of the enhanced tumor to estimate the deformation

field ût = U(m̂
(t)
0 ), where U(·) represents the deformation estimation module in

MSSDM, and m̂0 is computed based on Eqs. (1) and (2) as

m̂
(t)
0 =

√
ᾱt ·mt −

√
1− ᾱt · v̂m,t. (4)

MSSDM then applies ût to v̂i,t and v̂m,t to correct erroneous enhancement
and produces deformed image and mask velocity terms v̂d

i,t and v̂d
m,t, respectively.

Mathematically, for each voxel p in v̂d
i,t, we find its corresponding location p′ =

p+ ût(p) in v̂i,t and have v̂d
i,t(p) = v̂i,t(p

′). Because image values are defined at
integer locations, we perform linear interpolation to obtain v̂d

i,t(p):

v̂d
i,t(p) = ϕût

(v̂i,t(p)) = v̂i,t(p+ût(p)) =
∑

q∈N (p′)

v̂i,t(q)
∏

d∈{x,y}

(1−|p′d−qd|), (5)

where ϕût
(·) denotes the deformation based on ût, N (p′) represents the neighbor

voxels of p′, and d iterates over the spatial dimensions x and y. v̂d
m,t is obtained

in the same way. The detailed design of MSSDM is presented in Section 2.3.
We train D3M by minimizing the sum of a standard weighted mean squared

error loss Lwmse [19] of the synthesis result at each step and deformation smooth-
ness regularization Lsreg [1] applied to the deformation field at each step.

Inference. The trained D3M is used for CEMRI synthesis via the reverse
process. The synthesis begins with two independent zero-mean, unit-variance
Gaussian noise images. At the t-th step of the reverse process, the estimates x̂t

and m̂t of xt and mt respectively from step t + 1 are fed into the network
along with the NCMRIs and the time step to produce v̂i,t and v̂m,t. Next,
the intermediate estimate m̂

(t)
0 of the enhanced tumor mask is computed as

m̂
(t)
0 =

√
ᾱt · m̂t −

√
1− ᾱt · v̂m,t and passed through MSSDM to obtain the de-

formation field ût. Similar to m̂
(t)
0 , an intermediate estimate x̂

(t)
0 of the CEMRI

is computed as x̂(t)
0 =

√
ᾱt · x̂t−

√
1− ᾱt · v̂x,t. Finally, the estimate x̂t−1 of xt−1

with geometric correction is computed as

x̂t−1 = ϕût

(√
ᾱt−1 · x̂(t)

0 +
√

1− ᾱt−1 · ϵ̂i,t

)
. (6)
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Here, the terms in the parenthesis are determined following [21], and ϵ̂i,t is the

predicted image noise computed based on Eq. (1) as ϵ̂i,t =
x̂t−

√
ᾱt·x̂(t)

0√
1−ᾱt

. Similarly,
m̂t−1, i.e., the estimate of mt−1, is obtained in the same form as Eq. (6). The
process is repeated until t = 0.

2.3 Implementation Details

Following [7], the encoder of D3M is based on PixelCNN++ [20] with the Wide
ResNet backbone [28]. The deformation estimation module in MSSDM uses a
CNN architecture similar to U-Net, comprising an encoder and decoder with skip
connections. Both the encoder and decoder employ 3× 3 convolutions, followed
by LeakyReLU (α = 0.2). The encoder progressively reduces the spatial dimen-
sion by half at each layer (four layers in total), whereas the decoder combines
upsampling, convolutions, and skip connections to restore the spatial resolution.
The image decoder and mask decoder in DSIMD share the same network struc-
ture, which is the PixelCNN++ decoder [20].

All images are normalized by clipping the intensity values between the 0.5th
and 99.5th percentiles, followed by rescaling to the range [0,1]. The input im-
age size is 256 × 256. The number of training iterations is 200,000. The Adam
optimizer [12] is used with a batch size of 16 and a learning rate of 8× 10−5.

3 Results

3.1 Data Description

We evaluated D3M on two public datasets: BraSyn [13] and BraTS-PEDs [11].
BraSyn and BraTS-PEDs consist of brain magnetic resonance images of 1,470
and 307 patients with brain tumors, respectively, including aligned T1-weighted,
T2-weighted, FLAIR, and contrast-enhanced T1-weighted images. For BraSyn
and BraTS-PEDs, tumor masks (including enhanced tumor masks) are available
for 1,251 and 216 patients, respectively. These masks were manually annotated
and reviewed by clinical experts to ensure high-quality labels, and the corre-
sponding patients were used for model training. Specifically, for BraSyn, the
training/validation/test sets comprised images of 1,001/250/219 patients, re-
spectively; for BraTS-PEDs, the training/validation/test sets comprised images
of 173/43/91 patients, respectively.

3.2 Comparison with Existing Image Synthesis Methods

We compared our method with representative existing image synthesis methods,
including Pix2Pix [10], ResViT [4], Palette [18], and I2SB [14]. Pix2Pix is a GAN-
based image synthesis method with a CNN architecture. ResViT is a multimodal
medical image synthesis model combining vision transformers with convolutional
operators and adversarial learning. Palette is a basic diffusion model for image
synthesis. I2SB is a Schrödinger bridge diffusion model, which improves upon
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Fig. 2. Examples of synthesis results, shown together with the real CEMRI for refer-
ence. Note the tumor and vessel regions highlighted by arrows for comparison.

conventional diffusion models. All competing methods used the same training,
validation, and test sets as our method. For fair comparison, the competing
methods also used the enhanced tumor masks for training, where segmentation
of the enhanced tumor was used as an auxiliary task like D3M.

Examples of the synthesis results are shown in Fig. 2. The D3M result is more
consistent with the real image compared to those of the competing methods. In
particular, in the tumor regions, the enhancement produced by D3M agrees with
the tumor in the real image, whereas the competing methods produce noticeable
false positive and/or negative enhancement.

Next, we quantitatively compared D3M with the competing methods by cal-
culating the Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index
Measure (SSIM) between the synthesized and real images. Additionally, we an-
alyzed the synthesis results specifically within the tumor regions. To obtain the
tumor regions for the test images, we trained an nnU-Net segmentation model [9]
based on the tumor annotations of training data, and the trained model was ap-
plied to the test images.

The PSNR and SSIM results are presented in Table 1. D3M outperforms
all other methods, achieving higher PSNR and SSIM, both for the whole image



8 H. Pang et al.

Table 1. The means and standard deviations of the PSNR and SSIM between synthe-
sized and real images, as well as the results within the tumor regions. The best results
are highlighted in bold. Asterisks indicate statistically significant differences between
the results of D3M and each competing method based on the Wilcoxon signed-rank
test: *** p < 0.001.

BraSyn BraTS-PEDs

Model Whole Image Tumor Region Whole Image Tumor region

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Pix2Pix 23.53∗∗∗±2.89 87.70∗∗∗±4.25 15.31∗∗∗±4.40 65.37∗∗∗±18.38 20.80∗∗∗±2.68 74.61∗∗∗±8.59 15.36∗∗∗±4.78 70.36∗∗∗±16.49

ResViT 23.54∗∗∗±2.81 87.43∗∗∗±4.19 15.21∗∗∗±4.41 65.19∗∗∗±17.87 20.96∗∗∗±2.56 75.23∗∗∗±8.20 17.48∗∗∗±4.42 77.82∗∗∗±13.80

Palette 18.95∗∗∗±5.02 39.97∗∗∗±29.09 14.00∗∗∗±4.75 67.86∗∗∗±17.10 13.61∗∗∗±5.90 31.92∗∗∗±22.18 9.22∗∗∗±6.29 60.55∗∗∗±18.56

I2SB 25.01∗∗∗±2.94 89.11∗∗∗±3.99 17.05∗∗∗±4.81 71.59∗∗∗±16.66 21.98∗∗∗±3.00 77.05∗∗∗±8.40 17.91∗∗∗±5.29 80.76∗∗∗±12.91

D3M 25.11±3.33 90.95±3.86 17.33±4.56 73.21±16.22 22.21±3.45 79.29±9.02 18.20±4.40 82.07±13.33

Table 2. Ablation studies for investigating the individual benefit of MSSDM and
DSIMD in D3M. The means and standard deviations of PSNR and SSIM are presented
and the best results are in bold. Asterisks indicate statistically significant differences
between the results of D3M and each setting based on the Wilcoxon signed-rank test:
*** p < 0.001.

Model Whole Image Tumor Region

PSNR SSIM PSNR SSIM

D3M 25.11±3.33 90.95±3.86 17.33±4.56 73.21±16.22

Without MSSDM 24.76∗∗∗±3.29 90.40∗∗∗±3.96 16.07∗∗∗±4.63 70.76∗∗∗±17.19

Without MSSDM and DSIMD 24.05∗∗∗±3.31 90.00∗∗∗±4.01 15.82∗∗∗±4.63 70.41∗∗∗±17.10

and in the tumor regions. This highlights the superior performance of D3M in
synthesizing tumor regions. The Wilcoxon signed-rank test was also performed
for statistical comparison, and its results (also shown in Table 1) indicate that the
improvements achieved by D3M are highly statistically significant (p < 0.001).

3.3 Ablation Study

To confirm the individual benefit of the major components MSSDM and DSIMD
of D3M, we performed ablation studies on the BraSyn dataset. In the ablation
studies, the overall pipeline of D3M was revised and retrained with the same data
split as described in Section 3.1. The detailed results are shown in Table 2. First,
we removed MSSDM from D3M, where the output of DSIMD was directly used
to obtain the final velocity terms at each step. The PSNR and SSIM decrease
with the removal of MSSDM, especially in the tumor area. This result shows
the benefit of applying geometric correction. In addition, we further removed
DSIMD and used a single decoder instead. The PSNR and SSIM decrease even
more, demonstrating the benefit of using a dual-stream decoder to separately
handle image and mask information.
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4 Conclusion

We have proposed D3M to improve the quality of CEMRI synthesis with brain
tumors from NCMRIs. D3M models synthesis errors as misinterpretation of en-
hanced regions and thus incorporates geometric correction in the diffusion model.
The geometric correction is achieved with two modules, MSSDM and DSIMD.
MSSDM deforms the synthesized image to adjust the enhancement, where the
deformation field is estimated by MSSDM from the output of DSIMD that en-
codes the knowledge about tumor subcomponents. Experimental results on two
publicly available datasets show that our approach outperforms existing state-
of-the-art methods in synthesizing high-quality CEMRIs, particularly in tumor
regions.
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