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Abstract. Selective serotonin reuptake inhibitors (SSRIs) are recognized as the 

first-line treatment for major depressive disorder; however, the characterization 

of their microstructural effects on white matter (WM) is still limited. This study 

presents a novel path signature (PS) framework to quantify longitudinal WM 

plasticity utilizing clinical-grade diffusion magnetic resonance imaging (MRI) 

data. This approach overcomes the limitations of conventional diffusion met-

rics, achieving a sensitivity of 1 mm³ without requiring high-resolution imag-

ing. By combining rough path theory with super-resolution mapping, significant 

SSRI-induced reorganization is found in the transverse pontine tract, left anteri-

or limb of the internal capsule, and splenium of the corpus callosum in MDD 

patients. Changes in PS features in these fiber bundles and the left corticospinal 

tract correlate positively with reductions in the 17-item Hamilton Depression 

Rating Scale scores, providing preliminary evidence of a relationship between 

WM alterations and clinical outcomes. The findings establish PS analysis as a 

promising tool for detecting macrostructural plasticity in WM due to SSRIs, 

thereby bridging the critical gap between microstructural diffusion metrics and 

circuit-level reorganization, and providing a novel insight into comprehensive 

biomarkers for precision antidepressant therapy. 
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1 Introduction 

As a first-line pharmacological intervention for major depressive disorder (MDD), 

antidepressant medications demonstrate well-established efficacy, with selective sero-

tonin reuptake inhibitors (SSRIs) constituting the most frequently prescribed class [1]. 

The SSRIs exert therapeutic effects through serotonin reuptake inhibition in white 

matter (WM) projections across depression-related neural circuits [2, 3]. While exten-
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sive neuroimaging research has investigated SSRI-induced microstructural alterations 

using diffusion MRI (dMRI) metrics like fractional anisotropy (FA), a critical know-

ledge gap persists regarding macrostructural morphological changes in WM fiber 

pathways. This limitation significantly constrains the identification of robust bi-

omarkers for predicting therapeutic responses and personalizing treatment strategies. 

Tractography has advanced the study of WM through two primary methodologies: 

tract-based geometric analysis and voxel-based track-weighted imaging (TWI). Tract-

based approaches, such as Frenet frame curvature/torsion measurements and director 

field theory, quantify local fiber bundle deformations (e.g., splay, bend, twist) but 

lack comprehensive tools for hierarchically encoding multi-scale geometric variations 

across entire pathways [4, 5]. Meanwhile, TWI frameworks integrate streamlined 

attributes (e.g., count, length, density) into voxel-level maps [6,7], yet often overlook 

higher-order geometric properties that are critical for characterizing complex fiber 

morphology [8]. Inspired by these methodological limitations, we propose leveraging 

path signatures (PS) to systematically characterize WM fiber geometry. The PS, ini-

tially developed through rough path theory [9, 10], provides a mathematically rigor-

ous framework for quantifying complex morphological patterns in trajectory data 

through iterative integral transformations. Its unique hierarchically encoded multi-

scale geometric properties have proven effective in diverse pattern recognition appli-

cations, including handwriting trajectory analysis [11, 12]. 

These methodological gaps are particularly salient in clinical neuroscience, such as 

studying antidepressant effects in MDD. Building upon these foundations, we propose 

a novel paradigm shift in WM analysis by applying PS methodology to longitudinal 

dMRI data from MDD patients undergoing SSRI treatment. Our study addresses two 

critical unmet needs: (1) Macrostructural sensitivity: The existing literature predomi-

nantly focuses on microstructural FA changes. At the same time, macroscopic fiber 

morphology, which may be more reflective of circuit-level reorganization, remains 

largely unexplored. (2) Analytical resolution: Conventional diffusion metrics of dMRI 

suffer from resolution limitations (typically 2-3 mm
3
). PS-based analysis overcomes 

this through its differential geometry framework, which decouples morphological 

measurements from spatial resolution boundaries inherent to traditional approaches by 

extracting sub-voxel features from trajectory signatures. The novel approach has the 

potential to open up new avenues for understanding the impact of SSRI treatment on 

depression and for developing more accurate methods for predicting treatment re-

sponses. 

2 Methods 

2.1 Theory of PS 

The essence of PS features is based on the iterated integrals in Euclidean space. For a 

d-dimensional path X: [a, b] ↦  Rd , its signature 𝑆(𝑋)𝑎,𝑏 encodes multi-scale geomet-

ric properties as an infinite sequence of tensors, where a and b indicate start and end-

ing points. Below, we formalize the PS construction, emphasizing its clinical applica-

bility to WM tractography. 
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Let 𝑋𝑡 = (𝑋𝑡
1, 𝑋𝑡

2,   .  .  .  , 𝑋𝑡
𝑑)  denote a d-dimensional path parameterized by 

t ∈ [a, b]. The PS is recursively defined via iterated integrals: 

First-Order Terms (Linear Displacement). Quantify net displacement along co-

ordinate axes: 

 𝑆(𝑋)𝑎,𝑡
𝑖 = ∫ dXs

i =  𝑋𝑡
𝑖 − 𝑋𝑎

𝑖
a<s<t

       for i = 1, . . ., d. (1) 

These terms represent the cumulative linear movement (e.g., ∆x, ∆y, ∆z in a stream-

line). 

Second-Order Terms (Curvature & Covariance). Capture pairwise interactions 

between displacements: 

 S(X)a,t
i,j

=  ∫ S(X)a,s
i dXs

j
=  ∫ dXr

i
a<r<s<t

dXs
j
 

a<s<t
  for i, j = 1, . . . , d. (2) 

Diagonal terms (i = j) encode self-interaction (e.g., accumulated squared displace-

ment). Off-diagonal terms (i ≠ j) quantify directional covariance, analogous to the 

curvature tensor in differential geometry [13]. 

Third-Order Terms (Torsion & Nonlinear Dynamics). Describe triadic interac-

tions and non-stationary geometric properties: 

  S(X)a,t
i,j,k

=  ∫ S(X)a,s
i,j

dXs
k =  ∫ dXq

i dXr
j

a<q<r<s<t
dXs

k 
a<s<t

  for i, j, k = 1, . . . , d. (3) 

These terms resolve torsional dynamics (e.g., helical twisting in 3D fibers) and 

asymmetric interactions (𝑆𝑖𝑗𝑘 ≠ 𝑆𝑖𝑘𝑗) critical for modeling WM plasticity. 

General k-th Order Terms. Recursively defined as: 

  S(X)a,t
i1,…,ik =  ∫ S(X)a,s

i1,…,ik−1dXs
ik  

a<s<t
. (4) 

The full signature 𝑆(𝑋)𝑎,𝑏 is the collection of all such terms: 

 S(X)a,b = (1, {𝑆(𝑋)𝑖}, {𝑆(𝑋)𝑖𝑗}, {𝑆(𝑋)𝑖𝑗𝑘}, … ) . (5) 

The 0-th term of the PS remains constant at 1. Theoretically, the signature of a path 

is an infinitely long sequence. However, in practice, we often use the first K terms of 

the sequence and signature terms up to the K-th order to form a new sequence for 

analysis. This new sequence is referred to as the K-th order truncated PS. 

2.2 Construction of PS Feature Map 

In this study, we opted to set the value of K at a maximum of 3 based on two primary 

considerations: (1) empirical evidence demonstrates that third-order PS sufficiently 

capture the geometric complexity required for spatial trajectory analysis; (2) these 

order optimally balances computational efficiency with feature discriminability, as 

higher-order expansions yield diminishing returns in information gain relative to their 

increased computational cost. Figure 1 illustrates the process of constructing PS fea-

ture maps. By utilizing a sliding window with a length encompassing three sampling 

points and advancing with a step of 1, we sequentially compute the PS features for 

each point along a fiber tract. As shown in figure 1, three sampling points within a 
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window, denoted as p1, p2 and p3, form a local path segment. The PS feature set at 

point p2 was constructed from the first- to third-order truncated PS Sp1,p3, with the 

zeroth-order term excluded. This set is shown as follows: 

 Sp1,p3
= (Sp1,p3

1 ,  … , Sp1,p3
3 , Sp1,p3

1,1 , Sp1,p3

1,2 , … , Sp1,p3

3,3 , Sp1,p3

1,1,1 , Sp1,p3

1,1,2 , … , Sp1,p3

3,3,3
) (6) 

For each sampling point along WM tractography streamlines (excluding terminal 

points that lack valid trajectory information), we computed 39 distinct PS values cor-

responding to three signature orders. (1) First-order signatures (terms 1-3) quantify 

linear displacements along coordinate axes, capturing the most basic and primary 

characteristics of the path (e.g., tract elongation/contraction). (2) Second-order signa-

tures (terms 4-12) characterize curvature and acceleration through quadratic interac-

tions (e.g., bending in corpus callosum). (3) Third-order signatures (terms 13-39) 

describe higher-dimensional geometric deformations via cubic nonlinearities (e.g., 

spiral reorganization in cortico-cerebellar pathways). Notably, the second-order terms 

4, 8, and 12 exclusively generate positive values due to their mathematical construc-

tion, which involves squared terms that eliminate directional sensitivity. 

 

Fig. 1. The pipeline for constructing path signature (PS) feature map. (a) Schematic illustration 

of calculating the PS value for each point along a fiber using a sliding window. (b) After ob-

taining the PS values for each point on all fibers across the brain, different resolutions are set in 

the individual space, and the PS values are mapped to each voxel. When a voxel contains mul-

tiple sampling points (e.g., voxel Q in this figure), the positive and negative signature values 

are separately averaged and assigned to distinct positive and negative feature maps. This pro-

cess ultimately generates multiple PS feature maps corresponding to different signature terms. 

Once these 39 PS values in the entire brain are mapped back to their native 3D im-

age space, respectively, points may be located within the same voxel of the native 

space. When this occurred, positive/negative PS values (representing opposing fiber 

trajectory directions) within each native-space voxel were separately averaged to 

preserve directional information as follows: 

 𝑃𝑆𝑛
𝑝𝑜𝑠(𝑣) =

1

𝑁𝑣
𝑝𝑜𝑠 ∑ max (0, 𝑃𝑆𝑛(𝑝))𝑝∈𝑣  (7) 
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 𝑃𝑆𝑛
𝑛𝑒𝑔(𝑣) =

1

𝑁𝑣
𝑛𝑒𝑔 ∑ min (0, 𝑃𝑆𝑛(𝑝))𝑝∈𝑣  (8) 

where v denotes a voxel and p is sampling points within v. N denotes the number of 

sampling points with positive or negative value within v, while n refers to specific PS 

terms. To simplify notation, we denote positive and negative PS maps as 𝑃𝑆𝑛
𝑝𝑜𝑠

 and 

𝑃𝑆𝑛
𝑛𝑒𝑔

, respectively, where the index n is defined for signature terms: first-order (1-3), 

second-order (4-12), and third-order (13-39). 

The PS feature maps were generated at two resolutions using an open-source Py-

thon package: (1) Clinical-grade resolution (1.875 mm × 1.875 mm × 3 mm) match-

ing raw dMRI data; (2) Super-resolution (1 mm³ isotropic). This dual-resolution ap-

proach was implemented to visually assess potential gains in fiber tract delineation 

capacity within routine clinical imaging protocols. 

2.3 Longitudinal Data Acquisition and Analysis 

Population and Imaging Acquisition: Fifty-six MDD patients were recruited. All 

patients were diagnosed with a major depressive episode before treatment by at least 

two physicians using DSM-Ⅳ/MINI. The severity of depression was rated using the 

17-item Hamilton Depression Rating Scale (HAMD-17). All patients received SSRI 

antidepressant therapy under standardized clinical guidelines, with dosages dynami-

cally adjusted based on individual treatment response. Fifty-one patients (age: 

31.49±8.17, 20 males) participated in baseline and 12-week post-SSRI scans. They 

achieved remission (HAMD-17 <7 post-treatment) and were included in the analysis. 

Imaging used on a 3T Siemens Verio scanner. T1-weighted image was acquired cov-

ering the whole brain with TR=1900ms, TE=2.48ms, resolution =1mm×0.9766 

mm×0.9766mm. The dMRI data were acquired with a TR of 6600ms, TE=93 ms, 

resolution=1.875 mm×1.875 mm×3 mm. Each dMRI scan included 1 b = 0 and 270 b 

= 1000 s/mm
2
 diffusion-weighted volumes. This study was approved by the Medical 

Ethics Committee of Nanjing Brain Hospital and conducted by the Declaration of 

Helsinki. All participants provided signed informed consent. 

Image Processing and Tractography: All images underwent quality control and 

standardized preprocessing adhering to the principle of minimal necessary processing:  

alignment, centering, Gibbs ringing removal [14], and intensity correction [15]. For 

dMRI data, denoising [16], eddy current correction [17], EPI correction, and CNN-

based brain masking
1
 were applied. T1w-dMRI alignment used FSL rigid registration 

[17] while preserving native diffusion space. Whole-brain tractography employed the 

iFOD2 [18] algorithm (3 million seeds, other parameters: default). Streamlines were 

reduced to 1 million via SIFT filtering [19-20] and resampled at a resolution of 0.6 

mm (less than half the voxel size). 

Longitudinal WM Morphological Change Analysis: We obtained the average 

PS value of 50 WM regions based on the JHU-ICBM atlas for each MDD patient at 

baseline and after 12 weeks of SSRIs antidepressant treatment. Paired sample t-tests 

were performed to detect the differences before and after treatment, and the false 

                                                           
1  github.com/pnlbwh/pnlNipype 
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discovery rate (FDR) was used to correct multiple comparisons. A corrected p-value 

less than 0.05 was considered to indicate a statistically significant difference. 

Correlation Analysis between the Rate of Change in WM PS Feature Values 

and the Reduction Rate of HAMD-17 Score: The significantly altered WM regions 

were further investigated for their associations with the disease remission level. We 

formally calculated the rate of change in the PS feature value for each region 

|
mean(PSpretreatment)− mean(PSposttreatment)

mean(PSpretreatment)
| . Similarly, the reduction rate of the 

HAMD-17 score of each patient was defined as |
HAMDpretreatment − HAMDposttreatment

HAMDpretreatment
|. 

Spearman’s correlation analysis was applied to examine the correlation between these 

two rate values of change. 

3 Results 

3.1 PS Feature Map with Different Resolutions 

Figure 2 compares 𝑃𝑆1
𝑝𝑜𝑠

 feature maps of a patient at original and super-resolution 

scales
2
. While brain-wide value distributions remain similar, super-resolution maps 

demonstrate markedly enhanced tissue contrast clarity. This superior resolution moti-

vated their use in subsequent analysis. 

 

Fig. 2. Comparative transverse sections of 𝑃𝑆1
𝑝𝑜𝑠

 feature maps between original (1.875 mm × 

1.875 mm × 3 mm) and super-resolution (1 mm3) reconstructions in a representative patient. 

3.2 WM Morphological Alterations in Depressions Before and After SSRI 

Treatment 

Nine WM feature maps showed significant post-SSRI changes (𝑃𝑆1
𝑝𝑜𝑠

, 𝑃𝑆4
𝑝𝑜𝑠

, 𝑃𝑆5
𝑛𝑒𝑔

, 

𝑃𝑆7
𝑛𝑒𝑔

, 𝑃𝑆14
𝑛𝑒𝑔

, 𝑃𝑆25
𝑝𝑜𝑠

, 𝑃𝑆26
𝑝𝑜𝑠

, 𝑃𝑆36
𝑝𝑜𝑠

, and 𝑃𝑆38
𝑛𝑒𝑔

), revealing five spatial patterns (Fig-

ure 3): (1) Transverse pontine tract (TPT)-dominant with FDR-corrected p < 0.040 

(motor integration: 𝑃𝑆1,4,36
𝑝𝑜𝑠

, 𝑃𝑆38
𝑛𝑒𝑔

); (2) Left anterior limb of the internal capsule 

(ALIC)-clustered maps with FDR-corrected p < 0.028 (affective processing: 𝑃𝑆5,7
𝑛𝑒𝑔

); 

(3) Multi-nodal WM with FDR-corrected p < 0.048 (TPT, SCC, fornix, cerebellar-

capsular pathways: 𝑃𝑆14
𝑛𝑒𝑔

); (4) Cortico-cerebellar with FDR-corrected p < 0.044 

(sensorimotor-cerebellar circuits: 𝑃𝑆25
𝑝𝑜𝑠

); (5) Cross-hemispheric with FDR-corrected 

                                                           
2  https://github.com/qinjiaolong/PS 
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p < 0.045 (corpus callosum, thalamocortical connectivities: 𝑃𝑆26
𝑝𝑜𝑠

). These patterns 

highlight SSRI-induced structural plasticity across motor, affective, and interhe-

mispheric connectivity networks. 

 

Fig. 3. The results of white matter show significant alterations before and after SSRI treatment. 

The bar in each subplot denotes the t-value from the paired t-test, with the name of the signifi-

cantly FDR-corrected region labeled in the lower right corner. Warm colors indicate that a 

specific PS value was significantly higher before treatment than after. In contrast, cool colors 

signify that the PS value was significantly lower before treatment compared to after.  

3.3 Correlation Results between the Rate of Change in PS Feature Values and 

the Reduction Rate of HAMD-17 Score 

Figure 4 reveals significant correlations between HAMD-17 reduction rates and lon-

gitudinal changes in WM feature metrics: ∆ 𝑃𝑆1
𝑝𝑜𝑠

/∆ 𝑃𝑆4
𝑝𝑜𝑠

 (TPT), ∆ 𝑃𝑆26
𝑝𝑜𝑠

 (left 

ALIC), and ∆𝑃𝑆25
𝑝𝑜𝑠

 (left CST). Increased alterations in feature values within these 

regions correlated with more significant symptom relief, suggesting neuroplastic ad-

aptations in motor integration (TPT), affective processing (ALIC), and sensorimotor 

pathways (CST) may underpin SSRI-mediated antidepressant effects. 

4 Discussion and Conclusion 

Our findings demonstrate significant macrostructural WM reorganization in three key 

tracts following SSRI treatment: the TPT, left ALIC, and SCC. The observed morpho-

logical changes in the TPT–a crucial hub connecting cerebral motor cortices with the 

cerebellum [21]–align with previous reports of cerebellar system alterations in antide-

pressant responders [22]. While overt motor deficits do not classically characterize 

MDD, emerging evidence suggests subtle psychomotor disturbances may reflect cor-

tico-cerebellar circuit dysfunction [23], potentially modulated through SSRI-induced 

plasticity in this pathway. The ALIC alterations are significant, given their central 

role in the corticostriatal-thalamic-cortical (CSTC) circuit [24], a well-established 
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network associated with depression. Our PS-based WM morphological measurements 

complement prior diffusion metric studies, which have shown FA abnormalities in 

this region [25–27], and extend these findings by revealing treatment-responsive mac-

roscale geometric adaptations of fiber bundles. These structural morphological chang-

es may underlie enhanced CSTC circuit efficiency, potentially mediating cognitive 

improvements and emotional regulation [28]–though direct neurophysiological vali-

dation remains necessary. The splenium changes corroborate existing findings on the 

commissural fiber system [29], suggesting that SSRI treatment may normalize 

interhemispheric communication deficits through callosal remodeling. The conver-

gent evidence from macrostructural morphology analysis (current study) and micro-

structural [29] investigations strengthens the hypothesis that WM integrity restoration 

represents a common pathway for antidepressant efficacy. 

 

Fig. 4. The correlation results of the rate of change in average PS values within white matter 

regions pre- and post-SSRIs treatment with the reduction rate of the HAMD-17 score. (a), (b), 

(c) and (d) display the correlation results between the rate of change in the regions (i.e., 𝑃𝑆1
𝑝𝑜𝑠

 

values within the transverse pontine tract (TPT), 𝑃𝑆4
𝑝𝑜𝑠

 values within the TPT, 𝑃𝑆26
𝑝𝑜𝑠

 values 

within the left anterior limb of the internal capsule (ALIC), and 𝑃𝑆25
𝑝𝑜𝑠

 values within the left 

corticospinal tract (CST)) and the reduction rate of the HAMD-17 score, respectively. 

The positive correlation between longitudinal PS feature changes in the TPT, left 

ALIC, and left CST with HAMD-17 reduction rates provides preliminary evidence 

for structure-clinical outcome associations. While these tracts have been implicated in 

MDD pathology through diffusion metric abnormalities [30–32], our study pioneers 

the identification of their macroscale morphological dynamics as potential predictors 

of SSRI response. However, the observational nature of these correlations necessitates 

cautious interpretation until prospective validation establishes causal relationships. 

By implementing PS-based super-resolution mapping (1 mm³) on clinical-grade 

dMRI data, we achieved enhanced sensitivity in detecting subtle morphological 

changes that conventional dMRI metrics might overlook. This technical superiority 

was empirically validated through a comparison analysis. When applying identical 

statistical methods to the same SSRI treatment dataset, the FA map showed no signif-

icant effects (minimal FDR-corrected p = 0.067). In contrast, the PS map not only 
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demonstrated superior sensitivity in detecting microstructural changes but also con-

sistently outperformed FA in gender classification tasks [33]. This technical advance 

addresses the resolution limitations noted in our introduction, enabling voxel-level 

analysis of fiber geometry through sub-voxel trajectory characterization–a critical 

advantage for clinical applications where high-resolution scans are often unavailable.  

This study establishes PS analysis as a novel paradigm for detecting SSRI-induced 

WM macrostructure plasticity, bridging the critical gap between microstructural dif-

fusion metrics and circuit-level reorganization. The key findings are as follows: (1) 

SSRI treatment morphological changes in motor, affective, and interhemispheric 

pathways; (2) Longitudinal PS alterations correlate with clinical improvement; (3) 

Super-resolution PS mapping enhances detection sensitivity in clinical imaging. 

While promising for treatment prediction, multicenter validation is required. Future 

research should integrate multimodal neuroimaging to develop precision biomarkers 

for antidepressant therapy. 
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