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Abstract. Automated CT report generation plays a crucial role in im-
proving diagnostic accuracy and clinical workflow efficiency. However,
existing methods lack interpretability and impede patient-clinician un-
derstanding, while their static nature restricts radiologists from dynami-
cally adjusting assessments during image review. Inspired by interactive
segmentation techniques, we propose a novel interactive framework for
3D lesion morphology reporting that seamlessly generates segmentation
masks with comprehensive attribute descriptions, enabling clinicians to
generate detailed lesion profiles for enhanced diagnostic assessment. To
our best knowledge, we are the first to integrate the interactive segmen-
tation and structured reports in 3D CT medical images. Experimental
results across 15 lesion types demonstrate the effectiveness of our ap-
proach in providing a more comprehensive and reliable reporting system
for lesion segmentation and capturing. The source code is publicly avail-
able at https://github.com/yanniangu/ISRG-CT-MICCAI2025.

Keywords: Interactive Framework · Segmentation and Report Gener-
ation.

1 Introduction

CT (Computed Tomography) serves as an essential diagnostic tool, with radi-
ological reports serving as the primary medium for communicating diagnostic
findings to clinicians [13,22]. In recent years, CT report generation has gained
significant attention, with advancements focusing on automating the clinical
text generation process based on image analysis results [4,7,8,19]. Researchers
have developed various approaches to generate reports from CT images, include
traditional vision-based methods [10], vision-language models [3,26], and other
methods [15,24]. However, current CT report generation methods lack inter-
pretability and impede patient-clinician understanding, while offering no in-
teractivity [16]. This produces reports that fail to explain findings clearly or
adapt to new clinical cases, resulting in communication gaps and incomplete
assessments.
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To address these limitations, interactive segmentation techniques have shown
promising capabilities in related medical imaging analysis. Models like the Seg-
ment Anything Model (SAM) [12,20] enable clinicians to dynamically guide the
segmentation process through intuitive interactions, providing immediate visual
feedback and greater control over results. These techniques [11,17,18] success-
fully balance automation with expert input, allowing for precise refinements
while maintaining workflow efficiency. However, current interactive segmenta-
tion methods lack integrated report generation capabilities, forcing radiologists
to manually convert visual findings into structured clinical reports.

In this work, we introduce the first interactive framework for lesion morphol-
ogy reporting, integrating both intuitive visual segmentation and quantitative
textual attribute description for a comprehensive lesion characterization. Our
system enables radiologists to generate detailed clinical reports proposed by Lei
et al. [14], through minimal point-based interactions during image review, sig-
nificantly reducing interpretation time while preserving diagnostic precision. By
simultaneously generating accurate segmentation results with structured reports,
our approach provides improved explanatory capabilities, creating direct visual-
textual correspondence between report descriptions and anatomical features in
CT images. Additionally, this integrated framework demonstrates considerable
potential for facilitating multi-modal medical dataset annotation.

Technically, our approach delivers two key innovations: (1) feature-space
clustering-based point refinement that amplifies the impact of expert interac-
tions, and (2) inter-task feature synergy that enables bidirectional information
flow between segmentation and attribute description generation. The interac-
tive nature of our system significantly enhances zero-shot performance, allowing
radiologists to provide real-time feedback that helps the model adapt to novel
lesion types not encountered during training. Our contributions are as follows:

– We propose the interactive framework for joint lesion segmentation and at-
tribute description that integrates point refinement and feature synergy, en-
abling comprehensive lesion profiling with minimal radiologist interaction;

– Our approach has the potential to enhance clinical workflow efficiency by re-
ducing interpretation time while enhancing diagnostic communication through
direct visual-textual correspondence between reports and segmentations;

– Extensive experiments demonstrate superior performance in both segmen-
tation accuracy and attribute description quality, including robust zero-shot
capabilities for novel lesion types.

2 Methodology

Our proposed interactive framework enables radiologists to generate detailed le-
sion profiles through minimal point interactions. As shown in Fig. 1, the model
consists of two main components: the Vision-Prompt Hybrid Token Encode mod-
ule and the Synergistic Task Integration Decode module. Below, we describe each
module in detail.
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Fig. 1. The model architecture. Our framework processes 3D CT images and user-
provided points to simultaneously generate lesion segmentation masks and structured
attribute descriptions. The model integrates visual tokens, point tokens, initial mask
tokens, and initial IOU tokens into a hybrid encoding module, which forms the foun-
dation for both visual and textual outputs. Key innovations include a clustering-based
point refinement technique that optimizes the input points through clustering centers,
and an inter-task feature synergy mechanism that enhances the performance of both
segmentation and attribute description tasks concurrently.

2.1 Vision-Prompt Hybrid Token Encode Module

This module follows a dual-branch architecture, with image tokens extracted by
the vision encoder and prompt tokens derived from the prompt encoder. Notably,
to enhance the accuracy and reliability of user clicks, the prompt encoder in-
tegrates a feature-space clustering-based point refinement method. The refined
prompt tokens are then combined with the image tokens in the hybrid token
encoder, producing hybrid tokens that drive subsequent processing.

Vision encoder EI adopts a ViT-style [5] architecture, consisting of a stan-
dard ViT with primary local window attention and several interleaved global
attention layers. This design produces isotropic feature maps with consistent
feature dimensions. The extracted image features I = EI(I), where I denotes
the input image, are down-sampled for computational efficiency.

Prompt encoder EP transforms point coordinates using positional embed-
dings, generating distinct representations based on point labels. This process
converts sparse point prompts into embeddings that guide the model’s attention
toward specific regions of interest. To compensate for the randomness and po-
tential errors in individual point placements and improve interaction efficiency,
we incorporate feature-space clustering that extends the influence of each point
beyond its immediate location. For each user click p, we define a square local
feature window N(p) of size p×p centered at the click, and obtain features from
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the image features I:
Ip = {I(q)|q ∈ N(p)}. (1)

Applying K-means clustering, we partition Ip into k clusters and select the point
closest to each centroid µi as guidance:

q∗i = arg min
q∈Ci

∥I(q)− µi∥, i = 1, · · · , k. (2)

These selected points provide structured feedback, enabling the model to refine
predictions across semantically related regions rather than isolated pixels. The
final point prompt tokens are obtained by P = EP (q

∗).
Hybrid token encoder EH combines image tokens I, prompt tokens P,

mask tokens M, and IOU tokens via self-attention and cross-attention mech-
anisms, producing the hybrid token Z = EH(I,P,M, IOU). Self-attention ag-
gregates prompt context while cross-attention enables interaction with image
information. The mask tokens M help initialize and guide the lesion segmenta-
tion process, while the IOU tokens provide an initial metric for optimizing the
segmentation through the intersection-over-union score.

2.2 Synergistic Task Integration Decode Module

After obtaining the hybrid tokens, we use the mask head and the attribute
head to generate the segmentation masks and attribute descriptions, respec-
tively. Recognizing the intrinsic relationship between these tasks, we introduce
the inter-task feature synergy mechanism that enables bidirectional information
flow, allowing both tasks to mutually enhance each other’s performance.

Mask head Hseg: Initial mask tokens M0 interact with the hybrid token
Z through multiple Transformer layers to capture task-specific spatial and se-
mantic features, formulated as M = Hseg(M0,Z). This contextual refinement
process allows the mask tokens to encode detailed structural information about
the target regions. The extracted mask tokens M are subsequently upsampled
to enhance spatial resolution: M̂ = Upsample(M), producing the final segmen-
tation mask with precise boundary delineation.

Attribute head Hattr: This component predicts the attributes of the seg-
mented regions by processing the shared hybrid token Z. First, Z is passed
through residual block to capture essential features. Next, a self-attention mech-
anism refines the attribute representations, yielding A = Hattr(Z). By modeling
both local and global dependencies, this architecture enhances the accuracy of
attribute predictions. Finally, a classification layer with sigmoid activation gen-
erates the multi-label outputs, Ŷ = FCN(A).

Inter-task feature synergy: Medical image segmentation and attribute
prediction are inherently complementary: morphological features provide strong
indicators for pathological attributes, while attribute knowledge aids in precise
boundary delineation. To leverage this natural synergy, we enable bidirectional
feature exchange between the segmentation features M and attribute features
A by projecting them into a common latent space:

Zseg = Attn(M,Proj(A)), Zattr = Attn(A,Proj(M)), (3)
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where Attn(·, ·) represents the cross-attention mechanism that facilitates task-
specific features by leveraging complementary information between tasks. The
projection operation Proj(·, ·) ensures that the features from both tasks are
aligned in the same feature space. This bidirectional interaction improves seg-
mentation accuracy and enhances attribute prediction through mutual guidance.

2.3 Training Strategy

Our training strategy addresses two key challenges: (1) generating accurate seg-
mentation masks M̂ and (2) predicting correct multi-label attributes Ŷ. We
employ a simulation-based approach to mimic expert guidance and a composite
loss function to optimize both objectives simultaneously.

Expert-provided Click Simulation: Expert annotations provide crucial
feedback by highlighting misclassified regions and guiding the model to improve
boundary delineation and feature representation, but manual corrections are
costly. To emulate expert feedback during training, we identify misclassified re-
gions by computing error maps between the predicted mask Mpred and the
ground truth Mgt:

Mfn = Mgt ∧ ¬Mpred, Mfp = ¬Mgt ∧Mpred. (4)

False negatives Mfn represent missed features, while false positives Mfp show
incorrect predictions. We randomly select a point from these regions as a sim-
ulated expert click, guiding the model’s attention to improve performance in
subsequent iterations.

Dual-objective Loss Function: We optimize our model using a composite
loss function that balances segmentation accuracy and attribute classification:
Ltotal = Lseg + λLattr, where λ is an adaptive weighting parameter. For the
segmentation component, we employ Dice loss to measure overlap between pre-
dicted M̂ and ground truth masks Mgt:

Lseg = 1−
2
∑

i(m̂(i) ·mgt(i))∑
i m̂(i) +

∑
i mgt(i) + ϵ

, (5)

where m̂(i) and mgt(i) represent the predicted and ground-truth values at voxel
i, and ϵ is a small constant to avoid division by zero. For attribute prediction,
we use categorical cross-entropy loss:

Lattr = − 1

N

N∑
n=1

C∑
c=1

yc(n) log ŷc(n), (6)

where Ŷ = {ŷ1, ŷ2, · · · , ŷC} represents predicted probabilities across C classes,
and Ygt contains one-hot encoded ground-truth labels.

3 Experiments

In this section, we present a comprehensive evaluation of our approach through
a series of experiments designed to assess both segmentation performance and
structured report generation capabilities.
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Table 1. Templates of Structured Lesion
Reports. This table summarizes the five key
radiological attributes used to characterize
lesions, which represents a distinct aspect
of lesion morphology and appearance.

Attribute Description

Shape
“Round-like”, “Irregular”,

“Wall thickening”,
“Punctate, nodular”

Invasion

“No close relationship
with surrounding structures”,

“Close relationship
with adjacent structures”

Density “Hypodense”, “Isodense”,
“Hyperdence”

Heterogeneity “Homogeneous”,
“Heterogeneous”

Surface “Well-defined margin”,
“Ill-defined margin”

Table 2. Segmentation Performance.
Our proposed method is compared
against state-of-the-art segmentation
approaches and ablation variants of our
model.

Setting Method Metrics

DSC ↑ HD95 ↓

T
es

t

Baseline (UNet) [21] 0.733 5.586
SegMamba [25] 0.747 5.601
SAM-Med3D [23] 0.752 5.398

Ours (Vanilla) 0.758 5.020
+ Point Refinement 0.764 5.122
+ Feature Synergy 0.766 4.928
Ours (Full) 0.794 4.303

Z
er

o-
S
h
ot

Baseline (UNet) 0.712 2.758
SegMamba 0.712 2.695
SAM-Med3D 0.718 2.169

Ours (Vanilla) 0.726 2.079
+ Point Refinement 0.731 2.018
+ Feature Synergy 0.727 2.113
Ours (Full) 0.735 2.001

3.1 Dataset Description

We assemble 1535 CT scans and masks collected from public and private sources:
KiTS23 [9]: kidney tumor and cyst (489 scans); MSD [1]: colon tumor (126 scans),
liver tumor (303 scans), lung tumor (96 scans), pancreas tumor (216 scans),
pancreas cyst (65 scans); private data collected at China Medical University: liver
cyst (30 scans), gallbladder cancer (30 scans), gallstones (30 scans), esophageal
cancer (30 scans), gastric cancer (30 scans), kidney stone (30 scans), bladder
cancer (30 scans), and bone metastasis (30 scans). All these scans are annotated
with structured lesion reports by four radiologists. The gallstone and liver cyst
are treated as zero-shot test cases, meaning they are excluded from the training
phase. The remaining data is divided into training (60%), validation (20%), and
test (20%) sets.

Structured Report: We adopt a structured lesion report template, as pro-
posed in [14]. Specifically, each lesion comes with a corresponding structured tex-
tual report, including shape, invasion, density, heterogeneity, and surface, with
multiple possible categories for each. Further details can be found in Table 1.

Data Preprocessing: In the pre-processingg phase, we first locate the
largest lesion in each label file to determine its center. This center is then used
to crop the CT volume, ensuring that the region of interest (ROI) is tightly
focused on the lesion. By isolating the lesion and eliminating irrelevant back-
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Table 3. Performance comparison of different models on lesion structured report gen-
eration across multiple features, with accuracy as our evaluation metric.

Shape Density Invasion Surface Invasion Average
T
es

t
Baseline(CNN) 0.582 0.562 0.626 0.721 0.716 0.642
CT-CLIP [6] 0.681 0.525 0.769 0.759 0.746 0.696
M3D [2] 0.445 0.141 0.488 0.760 0.265 0.420
Ours (Vanilla) 0.680 0.605 0.769 0.796 0.752 0.720
+ Point Refinement 0.680 0.656 0.782 0.807 0.762 0.738
+ Feature Synergy 0.712 0.623 0.784 0.850 0.756 0.745
Ours (Full) 0.745 0.626 0.833 0.850 0.741 0.759

Z
er

o-
S
h
ot

Baseline(CNN) 0.283 0.367 0.400 0.167 0.800 0.403
CT-CLIP 0.283 0.500 0.317 0.000 1.000 0.420
M3D 0.267 0.500 0.700 0.000 0.000 0.293
Ours (Vanilla) 0.283 0.500 0.317 0.317 1.000 0.483
+ Point Refinement 0.283 0.483 0.317 0.600 1.000 0.537
+ Feature Synergy 0.283 0.500 0.417 0.500 1.000 0.540
Ours (Full) 0.300 0.600 0.483 0.533 1.000 0.583

ground, the model can focus on the lesion’s key features, ultimately improving
both the efficiency and accuracy of the learning process.

3.2 Comparision with the SOTA Methods

Our evaluation is divided into two key components—segmentation performance
and structured attribute description. All compared methods are either trained
or fine-tuned on our datasets to ensure a fair comparison. Ablation Setup:
We evaluate four model variants to isolate component contributions: (1) Vanilla
(backbone only), (2) Point Refinement (backbone + feature-space clustering
point refinement), (3) Feature Synergy (backbone + Inter-task feature synergy),
and (4) our full model combining both enhancements with the backbone.

Segmentation Performance: We compare our model against three leading
segmentation methods: UNet [21] (the well-established baseline in medical image
segmentation), SegMamba [25] (which leverages state space models for sequence
modeling in volumetric data), and SAM-Med3D [23] (a medical adaptation of the
Segment Anything Model with 3D capabilities). Performance is evaluated using
two metrics: Dice Similarity Coefficient (DSC ), which measures volumetric over-
lap, and 95% Hausdorff Distance (HD95 ), which captures boundary precision.

As demonstrated in Table 2, our approach outperforms the compared meth-
ods in both standard test cases and more challenging zero-shot scenarios. These
results underscore our method’s robustness in handling anatomical variability
while maintaining precise boundary delineation. Specifically, the Vanilla model’s
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strong performance confirms the synergy between segmentation and attribute
prediction tasks. The Point Refinement enhancement demonstrates how focus-
ing on diagnostically relevant regions improves results, while Feature Synergy
validates our approach of connecting spatial and semantic features.

Structured Attribute Description: Structured attribute description can
be framed both as a multi-label classification task, where each lesion has multiple
associated attributes, and as a visual-language task, where the model answers
questions about the lesion’s characteristics or aligns the image with correspond-
ing text reports. To evaluate our approach, we compare it against methods from
both perspectives with methods CNN model, M3D [2], and CT-CLIP [6]. This
allows us to benchmark our method against both specialized VLMs and tradi-
tional visual models in the medical vision domain.

As seen in Table 3, our method outperforms others in attribute prediction.
The M3D VQA-based approach struggles with complex features (0.000 accuracy
for zero-shot surface characteristics), while the CNN baseline falters with lesion
boundaries (accuracy drops from 0.642 to 0.403 in zero-shot). CT-CLIP per-
forms well in standard tests but struggles with unseen lesions and morphological
features in zero-shot scenarios. Our combined segmentation-attribute approach
ensures precise spatial-semantic mapping, yielding superior performance.

3.3 Interactive Framework Performance

To evaluate our interactive framework, we compare against SAM-Med3D, focus-
ing on zero-shot cases. Fig. 2 illustrates qualitative results across click iterations.
Our method achieves better boundary delineation and lesion characterization
than SAM-Med3D, with progressive improvements as click iterations increase,
confirming its ability to refine reports interactively based on radiologist input.

Ours

Dice: 0.76 Dice: 0.80 Dice: 0.81 Dice: 0.82 Dice: 0.75 Dice: 0.81

Dice: 0.79
ACC: 0.60

Dice: 0.81
ACC: 0.60

Dice: 0.81
ACC: 0.80

Dice: 0.83
ACC: 0.80

Dice: 0.82
ACC: 0.60

Dice: 0.82
ACC: 0.80

SAM-MED3d

Ground Truth

Input Slice

0 2 4 6 8 10Click Iteration

Fig. 2. Qualitative comparison between our method and SAM-Med3D, showing seg-
mentation progression across click iterations. Red overlays indicate masks.

4 Conclusion

We propose an interactive framework for lesion morphology reporting that in-
tegrates visual segmentation with structured attribute description. Our approach
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enhances segmentation accuracy, improves attribute description precision, strength-
ens zero-shot performance, and allows radiologists to refine reports interac-
tively. Experiments demonstrate that our method outperforms state-of-the-art
approaches, offering a more flexible and accurate solution.
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