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Abstract. Surgical workflow analysis poses significant challenges due
to complex imaging conditions, annotation ambiguities, and the large
number of classes in tasks such as action recognition. Self-distillation
(SD) has emerged as a promising technique to address these challenges
by leveraging soft labels, but little is known about how to optimize the
quality of these labels for surgical scene analysis. In this work, we thor-
oughly investigate this issue. First, we show that the quality of soft labels
is highly sensitive to several design choices and that relying on a single
top-performing teacher selected based on validation performance often
leads to suboptimal results. Second, as a key technical innovation, we
introduce a multi-teacher distillation strategy that ensembles checkpoints
across seeds and epochs within a training phase where soft labels maintain
an optimal balance—neither underconfident nor overconfident. By en-
sembling at the teacher level rather than the student level, our approach
reduces computational overhead during inference. Finally, we validate our
approach on three benchmark datasets, where it demonstrates consistent
improvements over existing SD methods. Notably, our method sets a new
state-of-the-art (SOTA) performance on the CholecTriplet benchmark,
achieving a 43.1% mean Average Precision (mAP) score and real-time
inference time, thereby establishing a new standard for surgical video
analysis in challenging and ambiguous environments. Code available at
https://github.com/IMSY-DKFZ/self-distilled-swin.

Keywords: Self-Distillation · Surgical Action Recognition · Soft labels
optimization.
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Fig. 1: Self-distillation quality depends crucially on teacher selection.
The performance of the student models trained with the teacher’s labels of
a certain epoch are represented as blue circles. While the teacher for SD is
commonly chosen based on the best validation performance (maximum on orange
curve: black star), the actual best teacher (green star) corresponds to a different
region on the loss curve. The green region represents the sweet spot for generating
soft labels because the teacher is neither too uncertain (left) nor overconfident
(right). (b) Representative soft labels corresponding to the three regions in (a):
uncertain (left), practical (middle), and overconfident (right).

1 Introduction

Surgical workflow analysis has arisen as a fundamental prerequisite for various
surgical artificial intelligence (AI) applications such as surgical quality assessment,
context-aware information retrieval, and cognitive robotics. However, surgical
videos come with various challenges such as poor contrast, artifacts (e.g., blur,
bleeding, smoke), and limited view. Often, video analysis problems come with
high ambiguity, also due to a potentially high number of similar classes [13,18].
Surgical action triplet recognition with a high number of up to 100 classes
and extremely high class imbalance, exemplifies these challenges, prompting
researchers to explore diverse approaches, including spatio-temporal modeling
[8,4], attention mechanisms [14], tail-aware methods [3], knowledge distillation
(KD) [4] and self-distillation (SD) [17]. Among these, SD has emerged as a
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particularly successful technique for addressing ambiguity through its innovative
use of soft labels. KD includes various model compression and knowledge transfer
techniques from larger teacher to smaller student models [5]. SD, in contrast,
keeps the same model architecture for teacher and student. These methods exhibit
diverse transfer mechanisms, including transfers across layers, features, logits,
or learned embeddings [2]. Our work focuses specifically on SD via logits-level
knowledge transfer.

Recent work in surgical action triplet recognition, SD-Swin [17] has demon-
strated the potential of SD to address high label ambiguity and class imbalance.
However, this work left a critical gap in understanding how to optimize the soft
labels used for distillation. Current approaches typically select the teacher model
based on optimal validation set performance, but we argue that this strategy may
not produce the most effective teacher in practice (Fig. 1). Our work addresses
this fundamental knowledge gap through three core contributions:

1. Sources of variability in the quality of soft labels: We show that
the quality of soft labels in SD depends crucially on the selection of the teacher.
Importantly, they are highly sensitive to a number of design choices, including
the epoch at which the teacher was saved and variations in random seeds or
hardware.

2. Teacher optimization: We propose a new approach to compile an
informative teacher in SD, based on three principles. (i) Teacher Selection:
Recognizing that the effectiveness of SD varies over time, with early epochs
producing noisy labels and later epochs generating overconfident, hard-label-like
outputs (Fig. 1), we select teacher checkpoints based on resulting student model
performance in cross-validation. (ii) Multi-Teacher Strategy: To address the high
sensitivity of SD, we propose a novel multi-teacher strategy that aggregates soft
labels from multiple teachers trained under varied configurations. (iii) Temporal
Decoder: Only after SD we add a temporal decoder to complement our best
student with temporal information.

3. New state-of-the-art (SOTA) model in surgical action triplet
recognition: We validate our approach through extensive experimentation on
three benchmark datasets, demonstrating consistent improvements over existing
SD methods.

2 Methods

2.1 Multi-teacher self-distillation framework

Our approach builds on two key observations: Firstly, we observed that the
prevailing approach of choosing the teacher with the best validation performance
yields suboptimal, overconfident labels (Fig. 1). Secondly, soft labels feature
limited robustness to a number of factors such as the non-determinism of neural
networks (Fig. 2). We leverage these findings for a new approach to SD based on
multiple teachers (Stage 1). Our framework integrates spatial learning through
multi-teacher SD with temporal learning via transformer-based sequence modeling
(Stage 2).
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Fig. 2: Teacher training conditions impact soft label quality. Soft labels
generated by a teacher model trained with specific parameters (epoch 4, seed
1, A100 GPU, learning rate 1e-04) serve as the reference point. The plots show
cosine similarity between reference soft labels (green) and those generated under
different conditions (blue), alongside corresponding student performance (red).

Stage 1: Spatial Learning employs multiple independently trained Swin trans-
former [10] teacher models with varying configurations selected within an optimal
region of the training curve (Fig. 3). The soft labels produced by the set of
teachers are then aggregated (here: across multiple epochs and random seeds).
Finally, a student model is trained with the aggregated soft labels to generate
frame-level embeddings and predictions.

Stage 2: To achieve temporal learning, consecutive frames are stacked to form
temporal sequences (Fig. 4). A temporal decoder, comprising positional encoding,
transformer encoder, and classifier layers then processes these sequences to
generate final predictions that incorporate both spatial and temporal information.

Implementation details: The spatial component uses a Swin transformer
backbone for both teacher and student models, configured as in SD-Swin [17].
Two variants of this backbone are used in our experiments: Swin-Base and Swin-
Large. The temporal component employs a transformer encoder with 4 heads
and 3 layers, with 1D embedding dimensions of 1024 (Swin-Base) and 1536
(Swin-Large). Final predictions are generated by averaging outputs from (i) the
spatial encoder and (ii) the temporal decoders at multiple time resolutions of 4,
6, and 9 consecutive frames. Training duration on the CholecT45 dataset using
the NVIDIA 4090 GPU was 9 hours for Swin-Base variants and 16 hours for
Swin-Large variants.

2.2 Validation methodology

Datasets Our method was developed and validated on the task of surgical
action triplet recognition (100 classes) using the CholecT45 dataset with the
official five-fold cross-validation split [13]. Additionally, we used the independent
test set from the CholecTriplet2021 [12] challenge to evaluate our approach. To
assess generalizability, we further tested our framework without changing any of
the hyperparameters except for the selected teacher epochs, on two independent
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Fig. 3: Ensembling of multiple teachers yields performance boosts
(sketch). All plots depict multiple checkpoints (red and grey circles) from
two differently seeded teacher models (blue and orange curve). (Left) The cor-
responding mAP of the student models (blue and orange diamonds) for each
teacher checkpoint and the best student mAP (green star) when using the optimal
checkpoint from one teacher model for distillation; (center) Intermediate-Epochs-
Ensemble (IEE): Combining soft labels from 7 different epochs of a single teacher
model; (right) Intermediate-Epoch-Seed-Ensemble (IESE): Combining soft labels
from 7 epochs each of teacher models trained with different random seeds.

surgical datasets: Action triplet recognition in cholecystectomy procedures (88
classes) using the HeiCholeActivity dataset [18]. We followed the recommended
cross-validation split by the authors. Furthermore, we evaluated on action-target
recognition in prostatectomy procedures (21 classes) using the SARAS-ESAD
dataset following the training, validation and test split [1]. For this dataset,
we parsed classification labels from the detection dataset. We validated the
performance using the mAP metric implementation used in the CholecTriplet2021
challenge [13].

Experimental design The purpose of the experiments was to investigate the
following research questions:

RQ1: What are the key factors contributing to performance vari-
ability in surgical SD? We investigated key factors in performance variability
by analyzing soft label variability across multiple conditions (Fig. 2). These
conditions included training duration spanning epochs 4-12, five different random
initialization seeds, hardware variations, and learning rate variations at discrete
values of 1e-4, 2e-4, 3e-4, and 4e-4. For our measurements, we established a
reference baseline using soft labels generated by a teacher model trained with
specific parameters (epoch 4 checkpoint, seed 1, A100 GPU, learning rate 1e-4).
We then evaluated both the mean cosine similarity between different soft labels
and the corresponding student model mAP performance.

RQ2: How can soft labels be optimized to enhance the effective-
ness of SD? We explored soft label optimization through four progressive
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Fig. 4: Multi-teacher self-distillation framework with two-stage spatial-
temporal modeling. The pipeline consists of SD from an ensemble of teacher
models into a single student model (Stage 1: Spatial Learning), followed by tempo-
ral processing of consecutive frame embeddings using a transformer architecture
(Stage 2: Temporal Learning).

teacher selection strategies. Fully-Converged-Teacher (FCT) selects the
checkpoint with the best validation performance according to the mAP metric,
while Intermediate-Teacher (IT) selects the single checkpoint producing best
student performance – in our implementation through brute force grid search.

Building on the IT checkpoint, we define the Practical Distillation Region
(PDR) as the range of epochs centered around the IT epoch. It’s a window of
epochs extending a certain number of steps both before and after the identified IT
epoch. This range captures the most effective teacher checkpoints for distillation.

The radius of this window, is represented by δ. The value of δ is influenced
by factors like the training configuration (such as the learning rate and total
number of epochs) and the specific characteristics of the dataset being used.
Following the SD-Swin [17] training setup, we empirically determined δ = 3,
yielding |PDR| = 7 teacher checkpoints.

Intermediate-Epochs-Ensemble (IEE) averages soft labels from multiple check-
points within the PDR while Intermediate-Epoch-Seed-Ensemble (IESE) combines
soft labels from multiple checkpoints and initialization seeds. We opted for av-
eraging over 3 seeds and 7 epochs. Additionally, we enhance our IESE student
model with a temporal decoder, forming our final proposed model, Temporal
Optimized Distillation (TOD). The TOD-Base variant is trained with the Swin-
Base backbone, while the TOD-Large variant is an ensemble of two IESE student
models trained with the Swin-Base and Swin-Large backbones [10].

RQ3: Do optimized soft labels consistently improve performance
across different surgical workflow analysis tasks? We developed our frame-
work on the cross-validation dataset of CholecT45 then applied it to the cor-
responding test set plus two additional independent datasets, represented by
the datasets HeiCholeActivity (Action Triplet) and the SARAS-ESAD (Action-
Target) (see sec. 2.2).
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Fig. 5: Performance gains are harmonious over three different datasets.
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proaches showing the highest gains. (a) Our TOD-Base (42.3%) and TOD-Large
(43.1%) achieve new SOTA results on the CholecTriplet2021 benchmark. (b) Our
conclusions hold for two independent datasets.

3 Results

RQ1: As depicted in Fig. 2, our analysis revealed significant variations in
soft label distributions across all experimental conditions, with mean cosine
similarities ranging from 0.89 to 0.96 relative to reference soft labels. The impact
of this variability extends to student model performance, with mAP scores
showing fluctuations of ±1.4-1.5% across different training conditions, even when
modifying only a single factor.

RQ2: According to our ablation study (Fig. 5) all of our key design choices
come with a performance boost. Overall, our key observations can be summarized
as follows: Firstly, there is a sweet spot occurring across specific epochs along
the training of a teacher for SD, which we call the “practical region” (see Fig.
1). This region corresponds to predicted soft labels that are not overfitted,
but already contain sufficient “dark knowledge” [5]. While the exact practical
window is dependent on the chosen training conditions, it is not necessary to
identify the single training checkpoint that produces the best soft labels (IT).
By contrast, it is even beneficial to combine a variety of predictions that come
from checkpoints within the practical window (IEE). This reduces the efforts
that would be necessary to identify the exact optimal point on the loss curve.
To prevent including checkpoints outside the practical region it is furthermore
beneficial to introduce slight training variations to the teacher (see Fig. 3).
Ensembling the resulting variations (IESE) can produce soft labels that further
increase performance. Finally, feeding the sequences of image embeddings into
a temporal decoder, provides an additional performance boost by effectively
integrating both spatial and temporal information (TOD).



8 A. Yamlahi et al.

The impact of our approach is particularly evident in the CholecTriplet2021
leaderboard results (Fig. 5, a), where our TOD-Large model achieves SOTA
performance at 43.1% mAP, with the base model variant reaching 42.3% mAP.
These results surpass the previous best method (LAM-Large [8]) which achieved
42.1% mAP.

RQ3: Despite being developed initially on a single dataset, our teacher selec-
tion methods demonstrate highly consistent performance patterns across all
datasets and (Fig. 5, b). The performance gain of our complete model (TOD-
Base) achieves substantial improvements over the baseline (FCT): +3.7 mAP
on HeiCholeActivity (24.2%, 27.9%); and +7.9 mAP on SARAS-ESAD (26.8%,
34.7%).

4 Discussion

With this paper, we challenged the prevailing assumption that choosing the
teacher with the best validation performance yields optimal soft labels for SD in
surgical scene analysis. We (1) uncovered the high variability in the quality of
soft labels in SD and (2) proposed an advanced teacher selection strategy that
aggregates soft labels from multiple complementary teachers. Strikingly, (3) our
methodology leads to consistent improvement patterns across a range of datasets
(Fig. 5).

Our research integrates smoothly into the state of the art outside the field
of medical imaging AI. While some works suggest that soft labels act as a regu-
larizer by providing smoothed target distributions that improve generalization
by offering richer information about class similarities [19], others have shown
their ability to recover useful information from corrupted labels [9] or capture the
teacher’s uncertainty in ambiguous cases [17]. Moreover, recent findings in KD
[15] with natural images (CIFAR-100 [6] and Tiny ImageNet [7]) indicate that
the best teacher is not necessarily the fully trained model; instead, intermediate
teachers often lead to better student performance. We extended these findings to
SD and demonstrated that intermediate teachers with inferior validation perfor-
mance outperform fully trained teachers with optimal validation performance
(Fig. 5). Our analysis complements Wang et al.’s work by focusing on the soft
labels, showing that intermediate soft labels in surgical action triplet recognition
capture the teacher’s uncertainty, while those from fully trained teachers exhibit
overfitting, resembling hard labels. This overfitting diminishes the effectiveness
of SD, explaining the benefits of selecting intermediate teachers.

Building on this insight, we recognized that even the optimal intermediate
teacher is still in a converging state, suggesting that ensembling multiple teachers
from this optimal region could yield superior performance (Fig. 3). While ensem-
ble methods have been explored in KD using complementary teachers [11], these
approaches prioritize diversity without systematic teacher selection that may
include suboptimal teachers. Recent work [16] introduced intermediate teacher
ensembling in traditional KD by combining features through self-attention mech-
anisms. We extend this concept to SD with a crucial distinction: our approach
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performs targeted ensembling at the soft-label level within the PDR. Unlike
diversity-focused methods, our two-stage approach first identifies optimal teach-
ers, then strategically ensembles them to capture both intra-teacher knowledge
(temporal evolution within the PDR) and inter-teacher knowledge (variations
across random seeds). This principled selection-then-ensemble strategy ensures
that we aggregate high-quality soft labels rather than blindly combining diverse
but potentially suboptimal teachers. One limitation of our approach is the need
to determine the practical region which - so far - requires brute-force search.
However, our method offers notable efficiency advantages at inference time be-
cause it eliminates the need for ensembling multiple student models. Compared
to SD-Swin, which distills knowledge from three separately trained teachers into
three corresponding students and ensembles the students at inference to achieve
37.4% accuracy at 5 fps, our IESE variant distills knowledge from 21 teachers
into a single student, achieving 39.8% accuracy at 14 fps on a NVIDIA 4090
GPU.

Future work can build upon our qualitative observations on soft label distribu-
tions throughout teacher training by developing quantitative measures to identify
the practical region without requiring exhaustive student training. Additionally,
exploring Parameter-Efficient Fine-Tuning (PEFT) methods could be a promising
direction to mitigate the extensive search for optimal teachers. This approach
has already been shown to be effective in surgical action triplet recognition,
as demonstrated by LAM-Large [8]. In conclusion, we have introduced a novel
multi-teacher SD approach that enhances neural network performance, with po-
tential applications extending beyond surgical workflow analysis to other complex
domains.
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