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Abstract. Augmented reality from preoperative 3D model registration
is promising to assist navigation in minimally-invasive liver surgery. The
current registration methods are either accurate, but require surgeon
interactions to annotate anatomical landmarks, or are fully automatic,
but inaccurate. We propose a two-step automatic and accurate registra-
tion method. Step 1) segments the registration landmarks with a neural
method. Step 2) estimates the 3D model deformation from the land-
marks. The task is challenging because of the defects of the automati-
cally segmented landmarks and the impossibility to label registration for
training. We handle it by combining supervised training from synthetic
transformations with domain adaptation and a novel robust Run-Time
Optimisation (RTO). Our method outperforms existing ones, both with
manual and automatic landmark segmentations, improving both automa-
tion and accuracy.
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1 Introduction

Minimally-invasive liver surgery offers significant advantages, but accurately lo-
calising intra-parenchymatous structures is highly challenging. Augmented real-
ity is an appealing solution, where the patient’s liver is modelled before surgery
from a CT scan, and is then projected onto the surgical 2D image to reveal tu-
mour locations. A key step is thus to register the preoperative 3D model to the
surgical image, which is highly challenging, as the liver is extremely deformable
and only partially visible during surgery. All liver registration methods exploit
anatomical landmarks visible in both modalities. The vast majority of methods,
whether based on numerical optimisation or neural models, and whether esti-
mating a rigid [1, 9] or a deformable [11, 13] registration, rely on the availability
of clean landmarks annotated by the surgeon on the surgical image. While some
methods are accurate, with a Target Registration Error (TRE) within 10 to
20 mm, the requirement for surgeon interactions is problematic. Recent meth-
ods [10, 2] automatically segment the landmarks but their registration accuracy,
with TREs of 20 to 45 mm, is insufficient for clinical use.

We propose a deep fully-automatic method reaching the level of accuracy
of the manual methods. It is thus compatible with clinical use, both in terms
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of user experience and surgical precision.Two major challenges are the unavail-
ability of clinical data hampering mere supervised training of a neural network,
and the fact that the patient’s liver appearance only becomes available at the
time of surgery. This is addressed by step 1), which implements patient-generic
automatic, hence imperfect, landmark segmentation, and step 2), which imple-
ments landmark-based patient-specific deformation estimation. Our contribu-
tions lie in step 2), which we propose to split in two substeps as described in
figure 1. Sub-step 2.A) estimates a global registration, modelled by a 3D affine
transformation. This transformation is regressed by a neural network trained
preoperatively from synthetic data, obtained by simulating the surgical camera
pose to synthesise the segmented landmarks. A major hurdle is to cope with the
domain gap between the perfectly synthesised landmarks and the automatically
segmented landmarks on surgical images. We deal with this hurdle using Domain
Adaptation (DA). Substep 2.B) estimates the residual registration deformation
through a proposed Run-Time Optimisation (RTO) process. RTO uses a neural
shape parameterisation and decodes the liver deformation. It limits the num-
ber of parameters to estimate and ensures that the deformation is physically
plausible. It is trained using an auto-encoder, from deformations simulated by
the Finite Element Method. RTO searches for the latent code by minimising
the differences between the predicted and segmented landmarks. The proposed
method named ADeLiR (Automatic Deformable Liver Registration) is accurate,
obtaining a TRE of 13.60 mm on the standard benchmark, making it the first
automatic and sufficiently accurate method for clinical applications.

2 Related work

Methods for 3D-2D registration generally have two parts: registration, to which
our work belongs, and tracking. Early liver registration methods [17] relied on
manual initialisation and manual landmarks. Deformation was addressed in [1,
9] by coarse initialisation [14] and refinement [11, 13]. These methods are suffi-
ciently accurate for the clinical setting but require clean manual landmarks. The
second-generation methods perform both automatic landmark segmentation and
deformation estimation via neural networks to enable full automation [10, 2]. The
most advanced method [10] uses a Liver Mesh Recovery (LMR) network for de-
formable registration. These automatic methods are still far from the manual
methods in accuracy. This owes to the scarcity of the available datasets and the
use of synthetic data ([10, 13] and several methods in [2]) being hindered by the
domain gap. DA aims at reducing the domain gap, for a neural network trained
on a source domain and tested on a different target domain [12]. DA generally
forces the network to encode the source and target images with the same dis-
tribution, by adding a discrepancy loss term [19] or an adversarial network [5].
These techniques were used in medical image processing [6] for classification and
detection. Recent DA methods [20] combine transformers and an adversarial
network, reaching state-of-the-art performance in classification. We adapt these
methods to regression for liver registration.
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3 System and Methods

3.1 System Overview and Main Steps

The preoperative 3D model is a mesh model of the complete liver annotated with
anatomical landmarks and its internal structures, which are only used at the
ultimate augmented reality visualisation stage. We assume that the endoscope
is calibrated, with intrinsic matrix Ktest, and the surgical image corrected for
optical distortions. The landmarks are anatomical edges of the liver [11]. In
contrast to existing work, we do not require clean anatomical landmarks in the
surgical image. We propose a fully-automatic method in two steps to estimate
a 3D-3D geometric transformation G mapping the preoperative 3D model to
the precise location where they were seen by the camera during surgery. Step
1) automatically segments the landmarks in the surgical image with an existing
patient-generic model [11] trained for default intrinsic parameters Ktrained. We
gain independence to the camera parameters at test time by transforming the
landmarks with KtrainedK

−1
test. Step 2) estimates G from the noisy landmarks

with a patient-specific neural model. Our contributions are in step 2), which has
two sub-steps (figure 1): coarse registration, sub-step 2.A), estimates a 3D affine
transformation with 12 parameters, and refinement, sub-step 2.B), estimates the
residual 3D deformation with m parameters.

Fig. 1. Following automatic landmark segmentation step 1), the proposed method
forming step 2) involves coarse step 2.A), inference of a 3D affine transformation,
and fine step 2.B), inference of a deformation in the preoperative 3D model coordinate
frame, to fit the anatomical landmarks.

3.2 Coarse Affine Registration

Affine registration captures the coarse global changes between the preoperative
3D model and the surgical camera with a 12 parameter 3D affine transformation.
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Importantly, it has a linear parameterisation, escaping the orthonormal rotation
constraints of the pose. The training data are clean simulated landmark images.
However, our objective is to use automatic landmarks (with missing parts and
perturbed points), inducing a domain gap, which we tackle with DA (figure 2).
General regression architecture. The network maps the landmarks to the
3D affine transformation. The input is an image whose channels contain the land-
mark masks, which handles missing landmarks. The outputs are the 12 affine
parameters. The network encodes the landmark image and uses 2 fully-connected
layers as decoder. We have experimented with encoders including ResNet and
ViT. The affine transformation is then applied to the 3D model to obtain ŷi.
The 3D loss Ltask is the Mean Square Error MSE = 1

n

∑n
i=1(yi − ŷi)

2 with the
simulated deformed model yi. We chose this 3D loss over the classical reprojec-
tion loss as it better captures the 3D information. It can be trivially computed
because the training data are simulated, as described in section 4.1.
Domain Adaptation. We train the model with DA to handle automatically-
segmented landmarks. As we do not have corresponding cross-domain (corre-
sponding simulated and segmented) data, we constrain the model to encode
images from both domains with similar feature distributions. DA is trained with
a supervised loss for the simulated landmarks and an adversarial loss for the
real landmarks, referred to as training and test in section 2. DA training is spe-
cific to each segmentation method. We adapt two state-of-the-art DA methods,
namely DANN [5] and TVT [20], to the regression task at hand. Both methods
take synthetic and automatic image features as input and pass them through an
adversarial decoder, trained to distinguish the source and target features with
a binary Cross Entropy loss Ladv. A Gradient Reversal Layer [8] reverses the
backpropagated gradient, training the encoder to fool the adversarial decoder
by encoding the synthetic and automatic landmarks similarly. For DANN, we
add its adversarial decoder and loss to our method (Resnet [7] and ViT [4] back-
bones) with final loss L = Ltask + Ladv. For TVT, we adapt its architecture to
regression by adding a linear head layer with 12 outputs for the sought affine
parameters and change the Cross Entropy task loss to the MSE, keeping the
adversarial term.

3.3 Fine Deformable Registration

The liver is a soft organ. Modelling its deformations is thus extremely impor-
tant to achieve precise registration. Learning-based deformation modelling and
estimation have shown potential for computed-assisted surgery [3], with neural
networks trained to reproduce liver deformations simulated by the Finite Ele-
ment Method [21]. We propose to refine the coarse registration by estimating
the liver deformation, for which we introduce a latent-space representation and
the RTO process, as shown in figure 3.
Deformed shape neural representation. We propose to use a latent-space
neural representation to parameterise liver deformation as D(z). Concretely, we
train an 8 linear layers auto-encoder to reconstruct liver deformations, with
100 epochs, the Adam optimiser and a learning rate of 10−4. A latent code
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Fig. 2. The coarse registration step 2.A) uses DA. Encoder A and decoder A are
trained on source images. DA is achieved by an adversarial network, leading to the
discriminator, trained to distinguish the source from the target features while training
the encoder A to fool the discriminator.

z ∈ R256 can then be decoded by D to generate a deformed 3D model. The
3D model is represented by a mesh with approximately 9, 000 vertices stacked
in D(z). The training deformations are synthetically-generated by the Finite
Element Method, as described in section 4.1. We simulate the deformations in a
coordinate frame centred on the preoperative 3D model, fixing the inferior vena
cava to create boundary constraints. This means that the parameterisation does
not learn global transformations. We finally compose the produced deformation
with the affine transformation, which at this point is held fixed.
Run-Time Optimisation. RTO deforms the liver model by optimising the
latent code as z = minz dH(Π(D(z)), L) where Π is the combined affine trans-
formation and projection function and L are the target landmarks. Function
dH sums the Hausdorff distance over the visible landmarks. The minimisation
is implemented within the MeshSDF framework [16] with z = 0 as initial con-
dition. As shown in figure 3b, the code z is decoded to a deformed liver mesh,
transformed with the fixed affine transformation, reprojected using the intrinsic
camera parameters, and the landmarks it carries are compared to the segmented
ones via the Hausdorff distance. The gradient is then backpropagated to z.

4 Datasets

4.1 Synthetic Training and Validation Data

The two sub-steps of our method need to be preoperatively trained from syn-
thetic data. Both trainings are patient-specific and do not require intraoperative
training, which is compatible with the surgical workflow.
Surgical camera simulation. Training the model for affine transformations
requires generating the image landmarks, hence to project the 3D model to form
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Fig. 3. Run-Time Optimisation (RTO). RTO is the fine registration step 2.B). It op-
timises the model landmark reprojection under guidance of a latent-space neural de-
formation model, trained preoperatively using an autoencoder and simulated deforma-
tions. a) RTO workflow, b) RTO algorithm.

2D images. We simulate rigid transformations representing camera pose as de-
scribed next. The intrinsic parameters of the real surgical camera are however
unknown when training. The proposed camera-generic training uses typical sur-
gical camera parameters instead, referred to as the Ktrained parameters. Specif-
ically, we use a standard image resolution of 1920 × 1080 pixels, a focal length
experimentally calibrated to f = 992 pixels with a checkerboard for the typical
settings of a Karl Storz laparoscope with 0-degree optics EUP-OL334, and the
principal point set at the image centre. Using standard camera parameters, we
projected the landmarks annotated on the patient’s 3D model and stored the
resulting 2D projections for training. The proposed method reaches an average
3D registration error of 7.35 mm on the evaluation simulations.
Deformation simulation. We trained the autoencoder D using 2,000 simulated
deformations in FEBio 1.6, a Finite Element Method software. We simulated
tool forces exerted on the liver as surface forces, allowing the capture of a wide
range of realistic deformations. We modelled the liver with an Ogden hyperelastic
model [18] with a material density of 1, 000 kg/m3 (comparable to water), a bulk
modulus of 0.4 GPa (near-incompressibility) and standard values for the other
model parameters (c1 = 4, 100 and m1 = 3.17).

4.2 Real Test Data

We use the standard public benchmark [15], giving the liver and tumour 3D
models for 4 patients and between 6 and 20 corresponding intraoperative images
per patient. The tumour GT position, as measured with an ultrasound probe
during surgery, allows one to compute the tumour TRE for the registration meth-
ods. The dataset includes clean manually-annotated landmarks but we also run
automatic landmark segmentation within the proposed fully-automatic method.
Whilst this dataset is interesting owing to the available GT, it has a small size
and uses images where the LUS probe is visible and equipped with markers,
which may perturb landmark segmentation. A known issue occurs for Patient 2,
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whose liver undergone a major torsion during image acquisition. We thus give
statistics with and without Patient 2. We also include 10 patients without ground
truth, numbered from 11 to 20, to visualise the ADeLiR results. We compared
the automatic to the manual landmarks, revealing an average point-noise level
of 7.6 pixels.

5 Experimental Results in Training and Testing

All trainings were performed using an Nvidia RTX Ti 2080 GPU, except for TVT
which used an Nvidia 4090 GPU. The coarse registration models were trained
for 100 epochs, with 64 as batch size, 0.0005 as learning rate and the Adam
optimiser, except for TVT which used SGD. The deformation autoencoders were
trained similarly, with learning rate 10−4. The proposed method is referred to

Method Opt LMR ADeLiR (ResNet) ADeLiR (ViT) ADeLiR (TVT)
Segmentation M A M A M* A M* A M A
Patient 1 10.3 29.3 17.4 17.9 06.48 12.45 26.46 29.34 45.07 27.63
Patient 2 63.0 86.9 53.8 45.6 43.57 46.44 74.09 70.14 42.59 45.01
Patient 3 09.5 30.0 17.6 46.9 13.46 17.13 54.40 63.45 27.02 30.51
Patient 4 14.7 19.8 17.0 22.7 10.18 11.20 40.49 39.04 101.86 105.87
Avg 24.4 41.5 26.5 33.3 18.42 21.81 48.86 50.49 54.14 52.26
Std 22.4 26.5 15.8 13.1 14.73 14.39 17.60 16.83 28.41 31.65
Average (w/o P2) 11.5 26.4 17.3 29.2 10.04 13.60 40.45 43.94 57.98 54.67
Std (w/o P2) 02.3 04.7 00.3 12.7 02.85 02.55 11.41 14.35 31.89 36.22

Table 1. TREs (mm) for ADeLiR (base) and the baselines Opt [11] and LMR [10] for
Manual and Automatic landmarks. * means w/o DA. Bold is best.

as Automatic deep Deformable Liver Registration (ADeLiR), which can be used
with manual or automatical landmarks. We use ADeLiR (base) where base is the
base architecture, namely ResNet or ViT (the encoder is ResNet34 or ViT-B-32
respectively, the base DA method is DANN) or TVT (the encoder is a modified
ViT with additional attention modules [20] and the base DA method is TVT).
We compare ADeLiR against two baselines: method Opt is an optimisation-based
method [11], which is the current best for manual landmarks, and method LMR is
a learning-based method [10], which is the current best for automatic landmarks.

We observe in table 1 that ADeLiR (ResNet) improves the performance of
liver registration with manual landmarks by 6 mm or 24% on average. However,
the strongest performance improvement is obtained for automatic landmarks
with an average improvement of 11 mm and 13 mm, with and without Patient
2, representing 34% and 48%. The transformer encoders in ADeLiR (ViT) and
ADeLiR (TVT) underperform; they do not capture the detailed image infor-
mation, which is probably because they are patch-based. We thus continue the
ablation study on ADeLiR (ResNet), shown in table 2. We observe that DA
improves the accuracy by 18% for automatic landmarks and RTO improves the



8 E. Gadoux, A. Bartoli

accuracy by 9% for manual landmarks, with smaller impact for automatic land-
marks. We observe that ADeLiR without DA outperforms ADeLiR on manual
landmarks, indicating that DA does a good job of specialising the features to
the automatic landmark domain, for which ADeLiR clearly outperforms. We
precisely investigate the RTO sensitivity to landmark quality. We start from the
clean landmarks to which we add noise with increasing level and measure the
impact on the performance benefit of RTO on the tumour TRE. The noise is
added by displacing the landmark points by a random white noise with controlled
standard deviation in pixels. We found that RTO’s efficiency starts decreasing
beyond a 2 pixels noise level and tends to 0 beyond an 18 pixels noise level.
This shows that RTO is stable, with reasonable sensitivity, contributing to im-
prove the registration at the expected noise level of 7.6 pixels. The runtime for

Method w/o DA, w/o RTO w/o DA w/o RTO ADeLiR
Segmentation M A M A M A M A
Patient 1 11.14 14.64 06.4814.66 10.78 12.1709.62 12.45
Patient 2 43.50 50.80 43.57 49.50 42.3647.64 42.90 46.44
Patient 3 15.07 22.39 13.4621.37 27.05 17.27 26.55 17.13
Patient 4 10.59 20.85 10.1821.36 27.98 11.40 28.15 11.20
Avg 20.08 26.99 18.4226.72 27.04 22.12 26.81 21.81
Std 13.63 13.64 14.73 13.4311.1814.91 11.80 14.39
Avg w/o P2 12.27 19.29 10.0419.13 21.94 13.61 21.44 13.60
Std w/o P2 02.0003.35 02.85 03.16 7.90 02.61 08.34 02.55

Table 2. Ablation study for ADeLiR (ResNet) using TREs (mm) with Manual and
Automatic landmarks. Bold is best.

Fig. 4. Left: automatic segmentation and registration of the liver using ADeLiR with
and without ablations. Right: extra ADeLiR results.

ADeLiR was 4.90 seconds (all images of both datasets; coarse registration time
of 0.05 seconds, fine registration time of 4.85 seconds, with 10 average iterations
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in RTO, on an Nvidia RTX 2080 Ti GPU without code optimisation). A 5 sec-
onds registration is competitive with existing methods and compatible with the
clinical usage.

6 Discussion and Conclusion

We have proposed an automatic liver registration method, which deforms a pre-
operative 3D liver model to fit an intraoperative 2D image. The method com-
putes a coarse 3D affine transformation and refines it via a neural deformation
model. We validate the method with a standard benchmark with ground truth.
The proposed method, whilst using noisy automatic landmarks, reaches a reg-
istration accuracy on par with the state-of-the-art manual methods and largely
outperforms the best existing automatic method. The proposed method has a
reasonable computation time and is thus expected to form a valuable basis to de-
velop concrete clinical use-cases of augmented reality in liver surgery. In future
work, we have planned to increase the validation datasets, to avoid patient-
specific training using knowledge-transfer from multiple patient models, and to
improve landmark segmentation by training from a larger dataset.

Disclosure of Interests. Author E. Gadoux have no competing interests to declare
that are relevant to the content of this article. Author A. Bartoli is the Chief Scientific
Officer at SURGAR.

References

1. Adagolodjo, Y., Trivisonne, R., Haouchine, N., Cotin, S., Courtecuisse, H.:
Silhouette-based pose estimation for deformable organs application to surgical aug-
mented reality. IROS (2017)

2. Ali, S., Espinel, Y., Jin, Y., Liu, P., Güttner, B., Zhang, X., Zhang, L., Dowrick,
T., Clarkson, J.M., Xiao, S., Wu, Y., Yang, Y., Zhu, L., Sun, D., Li, L., Pfeiffer,
M., Farid, S., Maiere-Hein, L., Buc, E., Bartoli, A.: An objective comparison of
methods for augmented reality in laparoscopic liver resection by preoperative-to-
intraoperative image fusion. Medical Image Analysis (2024)

3. Bodenstedt, S., Wagner, M., Müller-Stich, B.P., Weitz, J., Speidel, S.: Artificial
intelligence-assisted surgery: Potential and challenges. Visceral Medicine (2020)

4. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,
T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.:
An image is worth 16x16 words: Transformers for image recognition at scale. ICLR
(2021). https://doi.org/arXiv:2010.11929

5. Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F.,
March, M., Lempitsky, V.: Domain-adversarial training of neural networks. Journal
of Machine Learning Research (2016)

6. Guan, H., Liu, M.: Domain adaptation for medical image analysis: A survey. IEEE
Trans Biomed Eng (2022)

7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
CVPR (2016). https://doi.org/arXiv:1512.03385



10 E. Gadoux, A. Bartoli

8. K. Osumi, T.Y., Fujiyoshi, H.: Domain adaptation using a gradient reversal layer
with instance weighting. International Conference on Machine Vision Applications
(2019). https://doi.org/10.23919/MVA.2019.8757975

9. Koo, B., Özgür, E., Le Roy, B., Buc, E., Bartoli, A.: Deformable registration of
a preoperative 3d liver volume to a laparoscopy image using contour and shading
cues. Medical Image Computing and Computer Assisted Intervention (2017)

10. Labrunie, M., Pizzaro, D., Tilmant, C., Bartoli, A.: Automatic 3d/2d deformable
registration in minimally invasive liver resection using a mesh recovery network.
MIDL (2023)

11. Labrunie, M., Ribeiro, M., Mourthadhoi, F., Tilmant, C., Le Roy, B., Buc, E., Bar-
toli, A.: Automatic preoperative 3d model deformable registration in laparoscopic
liver resection. Information Processing in Computer-Assisted Interventions (2022)

12. Long, M., Cao, Z., Wang, J., Jordan, M.I.: Conditional adversarial domain adap-
tation. NeurIPS (2018)

13. Mhiri, I., Pizzaro, D., Tilmant, C., Bartoli, A.: Neural patient-specific 3d-2d regis-
tration in laparoscopic liver resection. International Journal of Computer Assisted
Radiology and Surgery (2024)

14. Plantefève, R., Haouchine, N., Radoux, J., Cotin, S.: Automatic alignment of pre
and intraoperative data using anatomical landmarks for augmented laparoscopic
liver surgery. Biomedical Simulation (2014)

15. Rabbani, N., Calvet, L., Espinel, Y., Roy, B.L., Ribeiro, M., Buc, E., Bartoli,
A.: A methodology and clinical dataset with ground-truth to evaluate registration
accuracy quantitatively in computer-assisted laparoscopic liver resection. Com-
puter Methods in Biomechanics and Biomedical Engineering: Imaging Visualiza-
tion (2021)

16. Remelli, E., Lukoianov, A., Richter, S., Guillard, B., Bagautdinov, T., Baque,
P., Fua, P.: Meshsdf: Differentiable iso-surface extraction. In: Advances in Neural
Information Processing Systems. vol. 33, pp. 22468–22478 (2020)

17. Robu, M., Ramalhinho, J., Thompson, S., Gurusamy, K., Davidson, B., Hawkes, D.,
Stoyanov, D., Clarkson, M.: Global rigid registration of ct to video in laparoscopic
liver surgery. International J. of Comput Assist Radiol Surgs (2018)

18. Simo, J.C., Taylor, R.L.: Quasi-incompressible finite elasticity in principal
stretches. continuum basis and numerical algorithms. Computer Methods in Ap-
plied Mechanics and Engineering 85(3), 273–310 (1991)

19. Sun, B., Saenko, K.: Deep coral: Correlation alignment for deep domain adaptation.
European Conference on Computer Vision (2016)

20. Yang, J., Liu, J., Xu, N., Huang, J.: Tvt: Transferable vision transformer for un-
supervised domain adaptation. WACV (2023)

21. Ziche, L., Lenzig, B., Bieck, R., Neumuth, T., Schoenfelder, S.: Image-based deep
learning of finite element simulations for fast surrogate biomechanical organ defor-
mations. Current Directions in Biomedical Engineering (2022)


