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Abstract. Spatial proteomics maps protein distributions in tissues, pro-
viding transformative insights for life sciences. However, current sequencing-
based technologies suffer from low spatial resolution, and substantial
inter-tissue variability in protein expression further compromises the per-
formance of existing molecular data prediction methods. In this work,
we introduce the novel task of spatial super-resolution for sequencing-
based spatial proteomics (seq-SP) and, to the best of our knowledge,
propose the first deep learning model for this task—Neural Proteomics
Fields (NPF). NPF formulates seq-SP as a protein reconstruction prob-
lem in continuous space by training a dedicated network for each tis-
sue. The model comprises a Spatial Modeling Module, which learns
tissue-specific protein spatial distributions, and a Morphology Model-
ing Module, which extracts tissue-specific morphological features. Fur-
thermore, to facilitate rigorous evaluation, we establish an open-source
benchmark dataset, Pseudo-Visium SP, for this task. Experimental re-
sults demonstrate that NPF achieves state-of-the-art performance with
fewer learnable parameters, underscoring its potential for advancing spa-
tial proteomics research. Our code and dataset are publicly available at
https://github.com/Bokai-Zhao/NPF.

Keywords: Spatial omics - Spatial proteomics - Computational pathol-
ogy - Protein spatial expression prediction.

1 Introduction

Spatial omics technologies, which profile molecular features in situ, are redefining
biological discovery[21]. In particular, spatial proteomics (SP), which maps pro-
tein distributions in intact tissues, was named Nature Methods’ 2024 Method
of the Year[16], accelerating advances in tumor microenvironment studies|23|
and biomolecular atlas construction[15]. However, despite these breakthroughs,
current SP methods are still challenged by fundamental trade-offs.
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Fig.1. Overview of NPF. The model takes spatial coordinates of sampling spots
and corresponding image patches from whole-slide images(WSI) as input. Trained on
sparsely sampled SP data, NPF predicts protein expression at unsampled locations via
continuous spatial reconstruction by its implicit neural representations.

Current SP technologies can be broadly divided into two categories, each with
its own limitations. Conventional imaging-based approaches|9, 4, 10]—limited by
the finite number of metal isotopes or fluorescent channels—restrict the multi-
plexing capacity of protein detection. In recent years, to overcome this through-
put bottleneck, next-generation sequencing (NGS) methods have been adopted
for SP. These sequencing-based techniques (seq-SP) profile high-plex protein ex-
pression by sampling discrete spots on tissue sections mounted on glass slides (as
shown in Fig. 1). However, the spacing and size of these spots impose a signifi-
cant constraint on spatial resolution. While employing more advanced hardware
to boost resolution would substantially increase sequencing costs, emerging deep
learning approaches offer a promising alternative by predicting protein expres-
sion at unsampled locations—a process we refer to as spatial super-resolution
for seq-SP, an area where research remains very limited[14].

The challenge of limited spatial resolution is not unique to seq-SP but also
affects spatial transcriptomics (ST). Recent ST spatial super-resolution work|[24]
has provided valuable insights: for example, STNet[12] and istar[25] rely solely on
histological RGB patches to predict gene expression, while STAGE[17] leverages
neighboring spot information. Although these approaches offer useful inspiration,
adapting them for protein expression prediction is nontrivial. Protein expression
exhibits substantial inter-tissue variability. Even slides from the same organ may
display remarkably different distributions due to factors such as age, sex, and
lifestyle. Likewise, the relationship between tissue morphology and protein ex-
pression can be highly tissue-specific. Furthermore, the field lacks standardized
benchmarks; the scarcity of publicly available datasets and limited sample sizes
pose challenges for evaluating and comparing existing methods.

To address these challenges, we propose Neural Proteomics Fields (NPF),
which, to the best of our knowledge, is the first deep learning method de-
signed specifically for seq-SP spatial super-resolution. Inspired by Neural Ra-
diance Fields (NeRF) [20], NPF formulates SP prediction as a protein recon-
struction problem in continuous space. By training a dedicated network for each
tissue slice, NPF can effectively capture the unique spatial distribution of pro-
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teins and its relationship with histological morphology. Specifically, NPF com-
prises two modules: the Spatial Modeling Module(SMM) and the Morphology
Modeling Module(MMM). The Spatial Modeling Module learns tissue-specific
protein spatial distributions from spatial coordinates. The Morphology Model-
ing Module features two branches: one employs a frozen pathology foundation
model (UNI[6]) to extract general morphological features, while the other, the
Tissue-Specific Feature Extractor, works synergistically with UNI to capture
the unique relationship between tissue morphology and proteomics for each tis-
sue. In this way, these branches collaboratively facilitate the efficient learning
of tissue-specific morphological characteristics, while simultaneously mitigating
overfitting.

Furthermore, to promote a comprehensive and fair evaluation of seq-SP spa-
tial super-resolution methods, we introduce the first open-source benchmark
dataset, Pseudo-Visium SP. Constructed using a high-resolution multi-fluorescence
imaging-based virtual spot generation method, this dataset simulates the spa-
tial distribution of the 10X Genomics platform and supports rigorous cross-
validation. We benchmarked NPF against representative methods in spatial tran-
scriptomics[12, 25] and other predictive approaches on both the Pseudo-Visium
SP dataset and real-world data from 10X Visium|[3]. Experimental results demon-
strate that NPF achieves state-of-the-art performance with substantially fewer
learnable parameters, underscoring its potential for advancing SP research.

Our key contributions are summarized as follows:

— We introduce the novel task of spatial super-resolution for seq-SP and, to the
best of our knowledge, propose the first deep learning method, Neural Pro-
teomics Fields (NPF), which formulates the task as a protein reconstruction
problem in continuous space, thus effectively handle inter-tissue variability
via capturing each tissue’s unique protein distribution.

— We propose a Spatial Modeling Module, which captures tissue-specific pro-
tein spatial patterns, significantly enhancing predictive performance.

— We also develop a Morphology Modeling Module, which efficiently captures
tissue-specific morphological features.

— We establish the first open-source benchmark dataset for seq-SP spatial
super-resolution, accompanied by standardized evaluation protocols.

2 Methodology

2.1 Problem Formulation

By drawing an analogy to 3D scene reconstruction in computer vision, the prob-
lem of improving SP resolution can be viewed as generating continuous protein
expression from discrete protein samples. In the context of 3D scene reconstruc-
tion, NeRF|[20] optimizes an underlying continuous volumetric scene function
through a sparse set of input views. This approach represents scenes using deep
neural networks.
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Fig. 2. Schematic representation of the NPF framework. NPF jointly modeling the
spatial relationships and multi-scale pathological features using a dual-branch archi-
tecture. The core of the framework includes: (1) Spatial Modeling Module (SMM)
inspired by NeRF|[20], which maps discrete coordinates to continuous high-dimensional
space representations; (2)Morphology Modeling Module, which integrates features from
a frozen pathology foundation model (UNI[6]) and a dedicated Tissue-Specific Feature
Extractor (TSFE). After fusion of spatial representations and image features, the target
protein expression is decoded through an MLP, enabling end-to-end SP prediction.

In the SP prediction task, we treat discrete spot protein samples as sparse
views, using a deep neural network to represent each sample. Our NPF frame-
work takes the spatial coordinates (z,y) of the sampling spots and the fine-
grained, multi-layered tissue image representation extracted from corresponding
tissue images as input. This approach enables the model to generate a dense pro-
tein expression map (Fig. 1), thereby enhancing the spatial resolution of seq-SP.

In NPF, we use I € R3*HXW to represent a spot image from WSI, H,
W represents the image height and width. The observed protein expressions
in each spot are denoted as P = {pi1,p2,...,pr} where k is the total number
of proteins. Our goal is to minimize the mean squared error (MSE) between
P'= NPF(I, [z,y] | §) and P by optimizing the network parametersf.

2.2 Neural Proteomics Fields Framework

Overview. The component-level Schematic of our method is illustrated in Fig.2.
NPF employs a dual-branch architecture to capture spatial relationships and tis-
sue morphological features, comprising a Spatial Modeling Module and a Mor-
phology Modeling Module. Detailed descriptions of each component involved in
NPF are provided in the following sections.

Spatial Modeling Module. To overcome the discretization limitation inherent
in SP data, we propose a continuous spatial encoding scheme through differen-
tiable coordinate transformation. The core innovation lies in a frequency-aware
position encoder that projects normalized 2D coordinates (x, y) into a continuous
high-dimensional manifold using spectral embedding:
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The encoded features undergo hierarchical refinement via M cascaded MLP
blocks with residual connections, progressively transforming the initial 2 L-dimensional
embeddings into an n-dimensional latent representation (n = 1024 in our im-
plementation). This architecture learns implicit spatial continuity, enabling sys-
tematic identification of protein expression gradients across tissue microenviron-
ment. In this study, we set L =6, M = 3.

Morphology Modeling Module. Taking inspiration from ViT-Adapter|7],
our MMM incorporates a frozen pre-trained pathology foundation model (UNI[6])
that learns general feature, along with a Tissue-Specific Feature Extractor that
learns tissue-specific features from specific WSI.
Pathology-Foundation Model. UNI[6] is a standard ViT-Large|[8] pre-trained
on 100 million pathological images using DINOv2[22]. The input image is ini-
tially processed by a patch embedding layer, which splits the image into 16 x 16
patches. A learnable [CLS] token is prepended to the patch sequence, followed
by the addition of trainable positional embeddings. These tokens added with the
position embedding, are processed through L encoder layers (L = 24).
Tissue-Specific Feature Extractor. The input image is first passed through
a CNN-based pyramid convolutional network[18] to extract multi-resolution fea-
tures. Three target resolutions (1/8, 1/16, and 1/32) are used to gather D-
dimensional spatial features. These feature maps are flattened and concatenated
into the input fJ, for feature interaction.

We divide the encoder of ViT into N = 4 blocks, each containing L/N =
6 encoder layers. For the i-th block, we inject fi, into the input feature f;,
(without the [CLS] token) using cross-attention, as shown in Equation 2.

fiit = foie + CrossAttn(norm(f;,), norm(fl,)), (2)

The feature of i-th ViT block f;lt is then passed to the next block and get
fﬂl = ViT( qz;it)'

Next, we apply a module with cross-attention and FFN to extract fine-grained
features:

o = ;'p + CrossAttn(norm( gp),norm( ), (3)
fit = Ji + FEN(morm(f2,)), (4)

Here, the cross-attention layer uses Deformable Attention[26]. Finally, we
apply mean pooling to get the final histological feature.
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Fig. 3. (a) Schematic diagram of constructing Pseudo-Visium SP datasets. (b) Visu-
alization of the prediction results of STNet and NPF on CD4 protein expression.

2.3 Spatial Proteomics Prediction Benchmark Dataset

Real seq-SP employs sparse sampling, which inherently limits dense prediction
evaluation capabilities. To overcome this constraint, we developed the Pseudo-
Visium SP dataset through virtual sampling augmentation of publicly available
glioblastoma CODEX data [11], generating densely distributed spatial proteomic
profiles. Our virtual sampling method preserved spatial correlation structures
while enabling dense evaluation protocols.

Pseudo-Visium SP. The CODEX dataset|[11] (sample=12) includes 40 imag-
ing channels representing the distribution of each protein. As illustrated in Fig. 3,
our preprocessing pipeline comprised: 1) Image registration: Rigid alignment of
H&E-stained images with CODEX maximum-intensity projections using ANTs
[5]; 2) Virtual spot generation: Hexagonal grid placement (100um inter-spot
spacing) covering the entire tissue section; 3) Protein quantification: Per-channel
intensity integration within 55um-radius circular ROIs, scaled by simulated cap-
ture efficiency: P; = 03 I(x,y), x,y € ROI;(n = 0.1) 4) Data augmentation:
Three systematic spatial shifts generating four mutually exclusive datasets for
4-fold cross-validation.

10X Visium data. For real data validation, we used two publicly available
SP datasets of Human Tonsil stained with HE[1, 2], provided by 10x Genomics,
which combines ST with high-plex SP using NGS on the same tissue section.

3 Experiments

Implementation Details. For each sample, an NPF model is trained for pre-
diction. Inputs include 224 x 224 pixel spot images centered on coordinates
normalized to the WSI dimensions (width/height). Protein expression values
are log-transformed. Training employs the Adam optimizer (initial LR=0.001)
with cosine annealing scheduling and linear warmup (start LR=107%, epoch=5),
using a batch size of 32 for 100 epochs.

3.1 Performance Comparison

Cross-Validation on Pseudo-Visium SP. We benchmark NPF against three
methodological categories: 1) Image feature based approaches: ResNet50 [13]
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Table 1. Performance comparisons on Pseudo-Visium SP datasets. For each sample,
we performed 4-fold cross-validation test: 70% of spots in a subset were used for training
and 30% for validation, with testing on three held-out subsets.

Dataset Method
sample Metric| Interpolate Image Feature ST-based ours
Subject | n Nearest| KNN | Res50 | ViT-B|Swin-T'| istar |[STNet| NPF
learnable params - - 25.6M | 85.8M | 27.6M | 0.4M | 7.98M | 25.5M
MCH258| 1 MSE] | 0.5212 0.3316(0.1594 0.1955 0.1544 {0.3196 0.1651|0.1271
PCCt | 0.6098 0.6924|0.8434 0.8042 0.8538 [0.7292 0.8381|0.8789
7H1041 | 1 MSE] | 0.9480 0.4878]0.2537 0.4033 0.2455 |0.6397 0.2704|0.1790
PCCt ] 0.5140 0.6680(0.8171 0.7043 0.8330 [0.6301 0.8104|0.8746
7H1007 | 2 MSE] | 0.6455 0.3852[0.2268 0.4141 0.2379 {0.3811 0.2424|0.1529
PCCt | 0.6271 0.7224|0.8467 0.7064 0.8427 [0.7431 0.8352|0.8923
ZH1019 | 2 MSE] | 0.5851 0.3461(0.2231 0.3436 0.2281 |0.3652 0.2579|0.1826
PCC?T| 0.5383 0.6557(0.7716 0.6259 0.7664 |0.6656 0.7222|0.8191
7Hs811 | 3 MSE] | 0.6261 0.3780(0.2022 0.4079 0.2228 {0.3799 0.2311|0.1475
PCCt | 0.6213 0.7184|0.8377 0.6760 0.8157 [0.7222 0.8060|0.8696
7Ho16 | 3 MSE] | 0.6707 0.4005|0.2169 0.5095 0.2392 |0.3972 0.2546 (0.1628
PCCt 0.6669 0.7621|0.8782 0.7139 0.8707 [0.7632 0.8508|0.9042
Mean |12 MSE] | 0.6517 0.3848(0.2142 0.4056 0.2265 |0.3986 0.2411|0.1590
PCCt ] 0.6099 0.7132|0.8371 0.6952 0.8303 [0.7194 0.8112|0.8748

Table 2. Performance of NPF versus top baselines(Res50, STNet) on 10X Visium SP
data with a 7:1:2 train/validation/test split.

10X Visium CytAssist Res50 STNet NPF

Gene and Protein Expression

MSE{ [ PCCT

MSEJ [ PCCT

MSE] | PCCT

Human Tonsil

0.1241 0.7247

0.1168 0.7316

0.0648 0.8125

Human Tonsil Add-on Antibodies

0.1588 0.6007

0.1572 0.6140

0.1184 0.7104

(Resb0), Swin Transformer [19] (Swin-T), and Vision Transformer [8] (ViT-B)
for image feature extraction; 3) ST predictors, i.e.istar[25] and STNet[12]. To
streamline result presentation, we aggregate samples into six subject-based sub-
sets, reporting mean metrics per subset. Every subset has n samples. As shown
in Table 1, NPF consistently outperformed all baselines across subsets, achieving
a minimum Pearson Correlation Coefficient (PCC) improvement of 3.8%, and an
MSE reduction of 0.06. Notably, NPF attain these results with nearly equivalent
learnable parameters to ResNet50, demonstrating enhanced parameter efficiency.

Evaluation on 10X Visium SP data. We further benchmark NPF against
top methods (ResNet50, STNet) on two real-world SP datasets. As shown in
Table 2, NPF achieves 8.1%/9.6% PCC improvements and 0.05/0.04 MSE re-
ductions over best baselines, demonstrating enhanced robustness and cross-tissue
generalization capability.

Qualitative Analysis. Visualization results demonstrate NPF’s superior accu-
racy in protein expression prediction. Owing to space constraints, Fig. 3 provides
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Table 3. Ablation study on spatial modeling with Pseudo-Visium SP dataset.

Method only Image Feature with SMM ours
Metric | Res50 | Swin-T | ViT-B [ Res50 | Swin-T [ ViT-B | NPF
MSE| | 0.2142 0.2265 0.4056 | 0.1826 0.1904 0.2261 | 0.1590
PCCt | 0.8371 0.8303 0.6952 | 0.8547 0.8555  0.8238 | 0.8748

Table 4. Ablation study on NPF architecture with Pseudo-Visium SP.

module Single-Module Dual-Module ours
SMM v v v v
TSFE v v v v
UNI v v v v

MSE| | 0.5615 0.3005 0.2683 | 0.2389 0.2055 0.2490 | 0.1590
PCCtT | 0.5169 0.7663 0.7891 | 0.8093 0.8404 0.8017 | 0.8748

a representative comparison between STNet and NPF using the Pseudo-Visium
SP dataset, highlighting enhanced spatial fidelity in microdomain resolution.

3.2 Ablation Studies

Ablation Study on Spatial Modeling Effectiveness. We evaluated spatial
modeling through systematic integration of SMM with diverse image encoders
(ResNet50, Swin-T, ViT) on the Pseudo-Visium SP benchmark. As quantified
in Table 3, SMM consistently enhanced prediction accuracy across architectures,
achieving PCC improvements of 1.8%, 2.5%, and 12.9% with concurrent MSE
reductions of 0.03, 0.04, and 0.18 respectively. Notably, ViT+SMM demonstrated
the most significant gains (APCC=+12.9%), underscoring synergistic coupling
between spatial modeling and tissue-specific morphological features extraction.
This empirical validation reveals that explicit spatial modeling enables effective
utilization of global spatial protein gradients, thereby advancing SP prediction
through position feature learning.

Ablation Study on NPF Architecture. We conduct ablation experiments
on core modules of NPF. Table 4 shows that all three proposed modules play
indispensable roles, proving their effectiveness. Furthermore, we find that TSFE,
in particular, significantly impacts performance, followed by UNI, highlighting
their key and mutually enhancing enhancement. We attribute this to TSFE ex-
tracting tissue-specific morphological features, while UNI extracts general ones,
enabling the model to effectively focus on and merge both general and specific
level features, thereby enhancing the model’s ability to mine tissue-rich informa-
tion and accurately predict protein expression.

The performance hierarchy (Full NPF > Any Dual-Module > Single-Module)
establishes the necessity of synergistic integration between three modules.
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4 Summary

We introduce the novel task of spatial super-resolution for seq-SP and propose
NPF, an implicit neural framework designed for SP prediction from WSI. This
framework integrates spatial modeling with a Morphology Modeling Module,
providing a powerful approach for high-plex protein expression prediction. Ex-
tensive experiments on pseudo and real-world datasets demonstrate NPF’s state-
of-the-art performance. Notably, NPF establishes a new paradigm for spatial
modeling in spatial omics. Future work includes broadening NPF’s applications,
utilizing larger datasets, and integrating with other spatial omics for deeper
insights into tissue complexity.
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