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Abstract. Continual Test-Time Adaptation (CTA) aims to improve
model generalization under distribution shifts by adapting to incoming
test data. However, conventional CTA methods, such as pseudo-label re-
finement and entropy minimization, face challenges in fundus image clas-
sification due to the limited number of training samples and class cate-
gories, which lead to overconfident yet miscalibrated predictions, making
traditional adaptation methods ineffective. To address these issues, we
propose a novel diffusion-based CTA framework, DiffCTA, which lever-
ages the generative capabilities of diffusion models to refine test samples
and align them with the source domain distribution without modifying
the source model. DiffCTA enhances test-time adaptation using diffusion
guidance while preserving diagnostic features. Specifically, we integrate
content guidance to retain anatomical structures, consistency guidance to
stabilize predictions via entropy minimization, style guidance for CLIP-
based domain alignment, and a sampling optimization module that dy-
namically adjusts guidance strength across diffusion timesteps. We con-
ducted experiments on glaucoma classification and diabetic retinopathy
grading tasks. In the glaucoma classification task, our method outper-
formed the best existing approach by 2.6%, demonstrating its effective-
ness in handling domain shifts without modifying the source model. The
code is available at: https://github.com/mingsiliu557/DiffCTA.
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1 Introduction

Medical image classification is a critical task for accurately diagnosing diseases by
identifying pathological and anatomical features, yet models often struggle with
real-world deployment due to distribution shifts caused by variations in imaging
protocols, operators, and scanners [7]. In fundus disease diagnosis, early detection
is vital to prevent vision loss. Color fundus photography provides detailed views
of the optic nerve and retinal structures, which are essential for detecting disease
progression. However, domain variability across imaging devices and settings
degrades the performance of trained models during testing, making consistent
and reliable diagnostics challenging in clinical practice.

Test-time adaptation (TTA) allows models to handle distribution shifts using
only test data, without requiring a labeled target dataset as in traditional domain
adaptation (DA) [24,3,25,29]. Most TTA methods use self-supervised auxiliary
losses, such as entropy minimization [22] and self-training [18], to adapt model
parameters. However, these methods often struggle in fundus imaging due to
dynamic domain shifts caused by variations in imaging protocols and equipment
across hospitals. To address evolving distributions, continual test-time adapta-
tion (CTA) has been proposed [23], requiring models to adapt sequentially across
multiple domains. Traditional CTA methods mitigate error accumulation and
catastrophic forgetting through loss optimization [23,14] or regularization [13],
but they rely on self-supervised losses prone to noisy supervision and overfitting.
In fundus disease classification, the limited data and category diversity lead to
overfitted source models with overconfident, low-entropy predictions, making
entropy-based adaptation methods (e.g., EATA [13], CoTTA [23], TENT [22])
ineffective in handling domain shifts. Thus, to improve adaptation in dynamic
fundus imaging, VPTTA [4] uses Fourier-based prompt tuning for target-to-
source transformation without modifying the source model but requires extra
prompt training. In contrast, our diffusion-based approach directly refines tar-
get images while preserving structural integrity.

Diffusion models enable continual test-time adaptation by iteratively denois-
ing test samples, aligning them with the source distribution [6,21]. Unlike tradi-
tional methods, they adapt without modifying the source model, making them
well-suited for fundus image classification.

Inspired by this, we introduce Leveraging Diffusion Models for Continual
Test-Time Adaptation in Fundus Image Classification (DiffCTA), a diffusion–
driven framework designed specifically for fundus disease classification under
continual test-time adaptation. The main contributions of this work are as fol-
lows: 1) To the best of our knowledge, this is the first work to address con-
tinual test-time adaptation for fundus image classification, introducing a novel
diffusion-based adaptation framework to mitigate domain shifts without alter-
ing the source model; 2) We design four key components to enhance adaptation:
content guidance to preserve anatomical structures, consistency guidance to sta-
bilize predictions via entropy minimization, style guidance to harmonize domain
shifts using CLIP-based alignment, and a sampling optimization module that
dynamically regulates guidance strength across diffusion timesteps; 3) Extensive
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experiments on multiple fundus imaging datasets demonstrate that DiffCTA
achieves state-of-the-art performance, highlighting its effectiveness in handling
domain shifts and its potential impact in medical imaging applications.

2 Proposed method

Our DiffCTA framework applies diffusion-based TTA by introducing structured
guidance at each reverse diffusion step. Specifically, we design three guidance
mechanisms: content guidance for anatomical preservation, consistency guidance
for prediction stability, and style guidance for semantic information of fundus
images. Additionally, we incorporate an anatomy-aware sampling optimization
strategy for fundus disease classification. Inspired by [6], our method enhances
adaptation through dynamic integration of these components. The overall archi-
tecture is shown in Fig. 1.
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Fig. 1. The DiffCTA architecture applies content, consistency, and style guidance dur-
ing reverse diffusion to refine target images. An anatomy-aware sampling strategy up-
dates each step, with xg

0,t predicted from xg
t via the DDIM reverse process.

2.1 DiffCTA Framework and Diffusion Process

Our DiffCTA framework integrates diffusion dynamics with clinical prior guid-
ance for fundus domain adaptation. Given a pre-trained unconditional diffusion
model on the source domain XS and a target domain input x0, the model gener-
ates samples x̂0 that progressively align with the source domain XS . We utilize
Denoising diffusion probabilistic models (DDPM) for adaptation [10], where the
forward process gradually adds Gaussian noise to a target domain image x0 over
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Algorithm 1 DiffCTA Adaptation Algorithm
1: Input: Target image x0, timesteps T , noise predictor ϵθ, classifier fϕ
2: Output: Adapted prediction ŷ
3: xg

T ← q(xT |x0), xg
T ∼ N (1, 0) ▷ Forward process

4: Set xblk ← 0, xwhi ← 1 ▷ Generate full white and full black sample
5: for t = T downto 1 do
6: Compute xg

t−1 via Eq. 2 ▷ Reverse process
7: Estimate intermediate clean image:

xg
0,t =

xg
t −
√
1− ᾱt ϵθ(x

g
t , t)√

ᾱt

8: if ||x0 − xg
0,t||1 ≤ max(||xblk − xg

0,t||1, ||xwhi − xg
0,t||1) then

9: gcontent ← ∇x
g
t
||xg

0,t − x0||1 ▷ Content guidance

10: gstyle ← η∇x
g
t

(
⟨Ei(x

g
0,t),Et(r)⟩

||xg
0,t||·||r||

)
▷ Style guidance

11: gconsist ← ∇x
g
t
H
(

1
K

∑K
k=1 pθ(y|Ak(x

g
0,t))

)
▷ Consistency guidance

12: Update: xg
t−1 ← xg

t−1 − λ (gcontent + gstyle + gconsist)
13: end if
14: end for
15: ŷ ← fϕ(x

g
0)

16: return ŷ

T steps using a fixed Markov chain. At each timestep t, noise with variance
βt is added, producing a noisy sequence [x0, x1, ..., xT ]. This forward process is
defined as:

q(xt|x0) =
√
ᾱtx0 +

√
1− ᾱtϵ, (1)

where ϵ ∼ N (0, 1) is the noise we add, αt = 1−βt, and ᾱt =
∏t

s=1 αs. The reverse
process iteratively removes noise to generate denoised images [xg

T , x
g
T−1, ..., x

g
0],

with each step defined as:

xg
t−1 =

1
√
αt

(
xg
t −

1− αt√
1− ᾱt

ϵθ(x
g
t , t)

)
+ σtϵ, (2)

where ϵθ is the model to predict noise, and σt is the noise variance.

2.2 Content Preservation Guidance

To preserve key fundus structures such as the optic disc and vasculature, we
enforce content consistency during the denoising process. Specifically, we gener-
ate an intermediate clean estimate xg

0,t using the DDIM reverse formulation[20]
(Eq. 3):

xg
0,t =

xg
t −

√
1− ᾱt ϵθ(x

g
t , t)√

ᾱt
. (3)

To ensure that xg
0,t retains structural fidelity with the target image x0, we apply

an L1 loss that enforces pixel-wise consistency and preserves essential anatomical
features (Eq. 4):

gcontent = ∇xg
t
||xg

0,t − x0||1, (4)
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where gcontent represents the gradient that guides the diffusion process to main-
tain fundus content. This constraint prevents excessive distortion during adap-
tation, ensuring that the generated images remain diagnostically reliable while
aligning with the source domain.

2.3 Prediction Consistency Guidance

To mitigate stochastic noise and accumulated errors during adaptation, we en-
force prediction consistency by leveraging augmentation invariance. Specifically,
a set of transformations {Ak}Kk=1 (e.g., slight rotations, intensity shifts) is applied
to xt, and the classifier predictions are averaged to form a smoothed probability
distribution (Eq. 5):

p̄θ(y|xg
0,t) ≈

1

K

K∑
k=1

pθ(y|Ak(x
g
0,t)), (5)

where pθ(y|xg
0,t) is the classifier prediction for xg

0,t, and p̄θ(y|xg
0,t) is the mean

prediction over all augmented samples. To enhance adaptation stability, we mini-
mize the uncertainty of p̄θ(y|xg

0,t) by computing the entropy loss gradient (Eq. 6):

gconsist = ∇xg
t
H
(
p̄θ(y|xg

0,t)
)
, (6)

where H(·) denotes the entropy function that quantifies prediction uncertainty.
This consistency constraint steers the diffusion model towards stable and source-
aligned predictions, reducing the impact of distributional shifts and ensuring
robustness across augmentations.

2.4 Cross-Modal Style Guidance

To better preserve the semantic information of fundus images, we incorporate
CLIP-based guidance. A predefined text prompt r (e.g., "fundus") encodes the
desired visual characteristics of the source domain. The alignment is enforced by
computing the cosine similarity between the image and text embeddings (Eq. 7):

S(xg
0,t, r) =

⟨Ei(x
g
0,t), Et(r)⟩

||xg
0,t|| · ||r||

, (7)

where Ei(x
g
0,t) and Et(r) represent the CLIP-encoded embeddings of the image

and text, respectively. To ensure the generated image inherits the style of the
source domain, we optimize this similarity by computing its gradient (Eq. 8):

gstyle = η∇xg
t
S(xg

0,t, r), (8)

where η is a scaling factor controlling the strength of style alignment. This guid-
ance refines the appearance of the adapted image, making it visually consistent
with the source domain while preserving diagnostic integrity.
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2.5 Anatomy-Aware Sampling Optimization

To avoid applying guidance when the image is dominated by noise, inspired by
[26], we introduce a structural check to determine whether the generated sample
contains meaningful fundus structures. Specifically, guidance is only activated
if the L1 distance between xg

0,t and x0 is smaller than the maximum distance
between xg

0,t and reference blank images xblk (fully black) and xwhi (fully white)
(Eq. 9):

||x0 − xg
0,t||1 ≤ max(||xblk − xg

0,t||1, ||xwhi − xg
0,t||1), (9)

where xblk and xwhi are blank and white images of the same size as x0. This
condition ensures that guidance is only applied when xg

0,t exhibits discernible
anatomical structures, preventing unnecessary updates in early noisy timesteps.

3 Experiments

3.1 Datasets and Implementation

The glaucomatous classification dataset comprises five public datasets col-
lected from different medical centers, denoted as domain A (RIM-ONE-r3 [5]),
B (REFUGE-train [15]), C (ORIGA [28]), D (ACRIMA [16]), and E (Drishti-
GS [19]). These datasets contain 159, 400, 650, 705, and 101 images, respectively.
We cropped a region of interest (ROI) centered at the optic disc (OD) with a size
of 800×800 following [11], resized it to 512×512, and applied min-max normal-
ization. This is a binary classification task where each image is categorized as
either glaucomatous or non-glaucomatous, and accuracy is used for evaluation.

The diabetic retinopathy grading dataset consists of four public datasets
from different medical centers: domain A (aptos2019-train [1]), B (Messidor2 [2]),
C (IDRiD [17]), and D (SUSTech-SYSU [12]), containing 3662, 1744, 516, and
1219 images, respectively. Each image is graded into five levels based on the
severity of diabetic retinopathy: No DR, Mild, Moderate, Severe, and Prolifera-
tive DR. Accuracy is used as the evaluation metric.

Implementation details. We implemented DiffCTA using torch 1.9.0 and
cuda 11.1, and conducted all experiments on a single GeForce RTX 4090. For
each task, we trained the source model on a single dataset and evaluated it
across the remaining datasets as target domains, reporting the average per-
formance across all target domains. The diffusion model is an unconditional
256 × 256 model trained on the source dataset. We used the publicly released
BioMedCLIP [27] checkpoint as the visual-language backbone for CLIP-related
components. ResNet50 [8] was used as the baseline for both tasks. During test-
time adaptation, we applied a single-iteration adaptation per batch (batch size
= 1) across all experiments for DiffCTA and competing methods. We employed
DDPM for forward and reverse diffusion with a total timestep of T = 50. For
the marginal entropy loss, we utilized AugMix [9], which randomly applies aug-
mentations such as posterization, rotation, and equalization. The style alignment
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factor η and gradient scaling factor λ were set to 5 and 8, respectively, to regulate
style guidance during reverse diffusion and balance adaptation strength.

3.2 Results

Comparison on the glaucomatous classification task. We evaluate our
proposed DiffCTA on the glaucoma classification task, comparing it with the
"Source Only" baseline and five state-of-the-art CTA methods. The results, sum-
marized in Table 1, show that all adaptation methods outperform the baseline,
confirming their ability to mitigate domain shifts. Notably, DiffCTA achieves
the highest accuracy across all domains, demonstrating its superior adaptabil-
ity and robustness. It not only performs well in domains where most methods
achieve reasonable results (e.g., Domain E) but also excels in challenging do-
mains where other methods struggle (e.g., Domain C). Furthermore, as shown
in Fig. 2, our adapted fundus images exhibit greater alignment with the source
domain, highlighting the effectiveness of diffusion-based adaptation.

Table 1. Glaucoma accuracy (%) on five target domains. Underline = 2nd best; Bold
= best.

Method Domain A Domain B Domain C Domain D Domain E AVG

Source Only 68.37 50.68 65.74 34.98 43.43 52.64
TENT [22] 65.84 58.84 60.36 28.42 42.76 51.24
CoTTA [23] 64.01 58.51 61.25 24.02 33.59 48.28
EATA [13] 66.46 58.50 63.34 33.41 40.42 52.43
SAR [14] 66.57 58.81 63.21 32.87 33.52 51.00
DDA [6] 69.71 56.06 67.20 34.22 39.73 53.38
DiffCTA 70.47 59.34 68.46 35.59 45.93 55.96

Comparison on the diabetic retinopathy grading task. For the di-
abetic retinopathy grading task, we conducted a comparative study under the
same experimental setup. As presented in Table 2, DiffCTA consistently outper-
forms competing methods, benefiting from training on the current test image
without modifying the source model. This ability to effectively adapt without
parameter updates enables DiffCTA to achieve the highest performance across
multiple target domains, further validating its robustness in handling domain
shifts in medical image classification.

Ablation study. We conducted an ablation study on the glaucoma classifi-
cation task using the REFUGE dataset to evaluate the contribution of our pro-
posed components. The introduced components include: 1) Content guidance,
preserving anatomical structures by enforcing pixel-wise consistency through L1
regularization; 2) Style guidance, aligning the target domain with the source
distribution using CLIP-based feature matching; 3) Consistency guidance,
stabilizing predictions via entropy minimization; and 4) Sampling optimiza-
tion, dynamically regulating guidance strength across diffusion timesteps. The
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Table 2. Diabetic Retinopathy accuracy (%) across four target domains. Underline =
2nd best; Bold = best.

Method Domain A Domain B Domain C Domain D AVG

Source Only 59.81 46.65 49.35 52.18 52.00
TENT [22] 52.19 48.24 35.21 48.76 46.10
CoTTA [23] 36.27 43.45 26.36 35.60 35.42
EATA [13] 56.39 48.13 45.09 43.93 48.39
SAR [14] 45.18 48.24 36.03 43.51 43.24
DDA [6] 60.99 55.97 49.33 52.45 54.68
DiffCTA 61.64 57.32 49.89 53.35 55.55

results, shown in Table 3, demonstrate the effectiveness of each component in
improving adaptation performance.

Table 3. Results of the ablation study on the glaucoma classification task using the
REFUGE dataset (source domain).

Components ACC (%)

Content 56.06
Content + Style 58.10

Content + Style + Consistency 58.23
Content + Style + Consistency + Sampling Optimization 59.34

4 Conclusion

In this work, we present the first study on CTA for fundus disease classifica-
tion and propose a novel diffusion-based framework, DiffCTA. By leveraging the
reverse diffusion process, DiffCTA aligns target domain images with the source
distribution while preserving key diagnostic features. Unlike traditional CTA
methods, which suffer from overfitting and unstable adaptation, DiffCTA ad-
dresses these challenges through content, consistency, and style guidance, along
with an optimized sampling strategy. Extensive experiments validate the ef-
fectiveness of DiffCTA, achieving state-of-the-art performance across multiple
datasets. These results highlight the potential of diffusion-based adaptation in
clinical medical imaging, especially in scenarios where direct model parameter
updates are impractical. In the future, we plan to extend DiffCTA to segmenta-
tion and other medical imaging tasks to enhance its applicability.
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Fig. 2. Visualization results on the glaucoma classification task. The domains under
the red arrows represent the target domains.
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