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Abstract. Existing active learning (AL)-based 3D medical image seg-
mentation methods often select images, slices, or patches as isolated
entities, overlooking inter-slice spatial relationships in 3D images. Ad-
ditionally, AL methods train the segmentation model on labeled data
only and ignore valuable unlabeled data. Both factors limit its ability
to further reduce labeled data needs. To address these problems, we
propose a novel semi-supervised AL approach termed SpaTial AggRe-
gation (STAR), which enables the model to learn from unlabeled data
beyond annotated samples by leveraging spatial correlations between
slices, reducing labeling costs. In each AL iteration, STAR employs a
spatial cross-attention mechanism to transfer relevant knowledge from
adjacent labeled slices to unlabeled ones by generating pseudo-labels.
These pseudo-labeled slices and queried slices are used to train the seg-
mentation model. The experimental results indicate that STAR outper-
forms other state-of-the-art AL methods, achieving fully supervised 3D
segmentation performance with as little as 18%-19% of the labeled data.
The code is available at https://github.com/HelenMa9998/STAR.

Keywords: 3D Medical Image Segmentation- Active Learning - Semi-
supervised Learning - Label Cost

1 Introduction

Deep learning has shown strong performance in 3D medical image segmentation
[11,6,19]. Yet, its effectiveness heavily depends on large amounts of labeled
data and manual slice-by-slice annotation of 3D medical images is both costly
and inefficient [24]. Active learning (AL) is an iterative algorithm where a model
selectively queries labels for the most informative samples to improve learning
efficiency with minimal labeled data [17]. However, AL-based 3D medical image
segmentation methods [2,13,14,20] train segmentation models exclusively on
labeled data, overlooking the wealth of unlabeled data and missing valuable
insights. Moreover, AL in 3D medical imaging can easily select redundant data
(e.g., repeatedly selecting similar slices), leading to inefficient annotation and
minimal performance gains.
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Semi-supervised learning (SSL) allows models to learn from a small amount
of labeled data and a larger amount of unlabeled data by pseudo-labeling or
consistency regularization to improving performance [21, 28, 23|. Integrating SSL
with AL helps reduce the number of training labels required [27], but only few
studies [3,12,4] have explored semi-supervised active learning (SSAL) for 3D
medical imaging. So far, these works have relied on a model initially trained on
labeled data to pseudo-label unlabeled data for retraining. Since the reliability of
pseudo-labels depends solely on the trained model, it can introduce noise (e.g.,
the model may confidently misclassify data and repeatedly make the same errors
on similar inputs).

Consecutive slices within the same 3D medical image volume exhibit strong
spatial correlations [9] (e.g., if a tumor in one slice is likely present in adjacent
slices). Leveraging these correlations can minimize AL redundancy by reducing
unnecessary, similar queries and enhance SSL by providing spatial context to
correct mislabeled pseudo-labels. Nonetheless, current AL and SSL methods for
3D medical image analysis completely ignore spatial relationships. Therefore,
this paper investigates the research question: Can spatial correlations reduce
labeling efforts with SSAL while maintaining performance? If so, how?

To answer the question, we propose SpaTial AggRegation (STAR), the first
SSAL algorithm that leverages spatial continuity between 2D slices within 3D
medical images to reduce labeling costs while enhancing segmentation perfor-
mance. STAR begins by selecting evenly spaced slices from each 3D volume
for initial labeling to ensure sample diversity. It then employs a spatial cross-
attention-based label aggregation module to generate pseudo-labels for unlabeled
slices based on their similarities to nearby labeled ones while selecting dissimilar
slices as queries for the oracle to label. At each iteration, confidently pseudo-
labeled slices combine with manually labeled data to refine the segmentation
model in an AL loop. Extensive experiments show STAR outperforms state-of-
the-art methods across multiple datasets, achieving better segmentation perfor-
mance with fewer labeled samples.

2 Proposed method

Consider a 2D slice sequence X = {x;}% | extracted from a 3D medical image,
where each slice x; € R"*™ has spatial dimensions h x w. STAR (Fig. 1) sequen-
tially partitions the full sequence into groups X, where g represents the group
index, by sampling every jth 2D slice for oracle annotation. Each group con-
sists of two consecutive sampled slices and the intervening slices, totaling j + 1
slices 3. The sampled slices form the labeled training pool, while the remaining
unlabeled slices constitute the unlabeled set.

To ensure clinically valid pseudo-labels for unlabeled slices, STAR applies
a spatial cross-attention mechanism (Section 2.1) to generate pseudo-labels by
aggregating segmentation information from pathologically similar labeled slices

3 If the last group has fewer than j + 1 slices, it is supplemented with slices from the
previous group in practice.
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Fig.1: The overview of STAR. (a) Slice Initialization; (b) Spatial Aggregation;
(c) Label Generation via AL (orange flow) and SSL (green flow).

neighboring the unlabeled slices within the same group. This effectively miti-
gates sequential noise and cumulative errors common in traditional linear label
propagation methods. Then, STAR queries the least neighbor-similar unlabeled
slices and adds them, along with confidently pseudo-labeled slices to the training
pool (Section 2.2). This repeats until a set number of iterations is reached.

2.1 Spatial Aggregation

STAR employs two encoders, f gnc and f énc, to transform unlabeled and labeled
slices into feature maps, respectively. fgnc encodes a single unlabeled image,
while fL . processes both image and its label via parallel convolutional layers
and sums their outputs to incorporate label information. Both share the same
backbone architecture (e.g., ResNet-50 [7]) but have different parameters. Sub-
sequently, another encoder K V . maps features into key and value pairs with dif-
ferent dimensions: the lower- dlrnensmnal key helps identify similar slices within
spatially adjacent ones, while the higher-dimensional value stores detailed patho-
logical structures for richer feature representation. Given an unlabeled slice x;
and a labeled slice x;/, the key-value matrices are computed as:

K, V;= Enc(fEnc(XL)) Ki, Vi = Enc(fEnc(X1 1Y )) (1)

where y; is the corresponding segmentation label; K € RFXWxD/8 and V €
RHXWXD/2. i W and D are the feature map’s height, width, and depth.

For an unlabeled slice x; € X,;, STAR calculates its attention score by com-
paring its key with those of labeled slices in X, where the score reflects the
pathological similarity. Unlike the original cross-attention [25], STAR enhances
it by concatenating the unlabeled slice’s value with the sum of labeled slices’
values weighted by attention scores. This ensures STAR refines representations
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by aggregating contextual information from near-labeled data while preserving
the unlabeled slice’s intrinsic features. Formally:

K, K,

Attention(x;) = Softmax(——— )V 2
(60 = 33 Softman(=/) @)
F,; = Attention(x;) H V; (3)

where - is dot product, H represents concatenation, Ij is the set of indices for
labeled slices in group X, and D is the depth dimension of K. F; is subsequently
used to generate the pseudo-label y; € {0,1}"*® for x; through decoder (i.e.,

Vi = fpec(Fi)).

2.2 Label Generation and Training Process

The training pool contains both labeled and pseudo-labeled slices. To optimize
annotation selection, STAR exploits spatial correlations to minimize redundant
queries in AL process. To avoid the noise and cost of raw image comparisons,
we compute slice similarity in the embedding space where features are more
meaningful and robust. Cosine similarity efficiently captures angular differences
and is robust to appearance changes, making it well-suited for image embeddings.

Therefore, STAR selects the unlabeled slice with the lowest average cosine
similarity to labeled slices within each group for annotation, as less similar slices
are often more informative and improve segmentation performance. The spatial
similarity of an unlabeled slice x; is calculated as:

: cos(fY (xi), f& (xir,yu
Szm(xz) — Z (fEnc( |)I{Ifnc( y )) (4)
ezl g
In addition, to ensure pseudo-labels reliability and reduce noise, STAR uses
entropy to rank predictions and selects the top N as high-confidence pseudo-
labels, which are updated iteratively during training.

Following the AL framework, STAR performs multi-round training with it-
erative selection. In each round, STAR adopts a two stage training strategy to
enhance generalization and training efficiency. In the first stage, sampled slices
are labeled and added to the labeled pool, where fgnc and fpec are trained
through supervised learning with focal loss [10]. The parameters of fY . are
shared with f% . for initialization. In the second stage, STAR pairs every two
closest labeled slices for training (e.g., ((xy,yi,Xi),yiv)). Concretely, STAR
feeds (x;/,ys) into fL . and x;» into f%, .. The model then predicts the seg-
mentation label y;~, which is subsequently compared with the actual label y;
using propagation loss to update f£, ., f5.., [V and fpec. This process repeats
for all pairs across all the 3D images. The training continues until the annotation
budget is met or a stopping criterion is reached, resulting in a model trained on
a dataset that combines strategically selected labeled and unlabeled data.
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Table 1: Model performance with varied label percentages on BraT§S and Spleen.
mazx(p) is the highest performance. S% is the minimum data percentage needed
to match supervised performance (0.834 on BraTS, 0.891 on Spleen). A dash
(-) indicates the method does not reach the supervised performance. The best

approach is highlighted in red.

BraTS AL|SSL 15% 20% 25% 30% max(p) S%
Rand v | x | 0.806 = 0.03 | 0.819 £ 0.01 | 0.828 + 0.01 | 0.833 £+ 0.01 | 0.833 £ 0.01 -
Marg v | x | 0.807 £ 0.02 | 0.823 £ 0.01 | 0.827 £ 0.01 | 0.819 £ 0.01 | 0.833 £ 0.01 -
Ent v | x | 0.797 £ 0.01 | 0.807 £+ 0.02 | 0.828 £ 0.01 | 0.831 + 0.01 | 0.833 £+ 0.01 -
MC-D v | x | 0.807 £ 0.02 | 0.828 £ 0.01 | 0.825 £ 0.01 | 0.825 £ 0.01 | 0.830 £ 0.01 -
KCG v | x | 0.800 %+ 0.02 | 0.825 £+ 0.02 | 0.830 £ 0.02 | 0.832 £+ 0.01 | 0.832 £ 0.01 -
BAL v | x |0.793 + 0.03 | 0.819 £+ 0.01 | 0.809 + 0.02 | 0.812 £+ 0.03 | 0.831 + 0.00 -
CEAL(Marg) | v/ | v | 0.822 £ 0.01 | 0.816 + 0.01 | 0.810 £ 0.03 | 0.818 + 0.01 | 0.823 &+ 0.01 -
CEAL(Ent) v | v | 0.807 £ 0.02 | 0.828 £ 0.01 | 0.829 £ 0.01 | 0.816 & 0.01 | 0.833 £ 0.01 -
CEAL(MC-D)| v/ | v | 0.808 + 0.02 | 0.825 + 0.01 | 0.805 £+ 0.02 | 0.821 + 0.03 | 0.831 + 0.01 -
TAAL v | v | 0815+ 0.02 | 0.824 £+ 0.01 | 0.814 £ 0.02 | 0.824 £+ 0.01 | 0.832 £ 0.01 -
STAR v | v |0.828 &+ 0.01|0.837 + 0.01|0.830 + 0.01|0.834 + 0.01|0.836 + 0.01(19.4%
Spleen AL|SSL 15% 20% 25% 30% max(p) S%
Rand v | x | 0.862 + 0.03 | 0.871 &+ 0.01 | 0.869 & 0.04 | 0.888 £ 0.01 | 0.904 + 0.01 |34.1%
Marg v | x | 0.870 £ 0.01 | 0.854 £ 0.04 | 0.871 £ 0.02 | 0.869 £ 0.03 | 0.910 &+ 0.02 |32.1%
Ent v | x | 0.857 +0.03 | 0.877 £ 0.02 | 0.861 £ 0.02 | 0.859 % 0.00 | 0.890 £ 0.00 -
MC-D vV | x | 0.857 & 0.02 | 0.859 &+ 0.03 | 0.866 & 0.03 | 0.890 £ 0.02 | 0.898 + 0.02 | 36.0%
KCG vV | x | 0.853 + 0.03 | 0.843 &+ 0.04 | 0.880 £ 0.01 | 0.888 £ 0.02 | 0.897 + 0.01 |34.1%
BAL v | x | 0.849 + 0.03 | 0.876 £ 0.03 | 0.860 + 0.03 | 0.891 £ 0.02 | 0.892 + 0.02 -
CEAL(Marg) | v | v | 0.805 £ 0.05 | 0.853 £ 0.02 | 0.838 £ 0.03 | 0.868 + 0.01 | 0.883 %+ 0.01 -
CEAL(Ent) v | v | 0.828 + 0.03 | 0.874 &+ 0.02 | 0.894 £ 0.01 | 0.855 £ 0.02 | 0.907 £ 0.02 |32.1%
CEAL(MC-D)| v' | v | 0.862 £ 0.02 | 0.885 + 0.01 | 0.865 + 0.04 |0.893 &£ 0.03| 0.904 + 0.03 | 20.2%
TAAL vV | v | 0.861+0.04 | 0.876 £ 0.02 | 0.868 £ 0.01 | 0.868 £ 0.03 | 0.910 &+ 0.01 |24.2%
STAR v | v |0.873 £ 0.03|0.899 + 0.02]{0.902 + 0.01| 0.884 £ 0.03 |0.913 + 0.02|18.2%

3 Experiments and Results

3.1 Experimental Setup

Two well-known public medical image segmentation datasets are selected: BraTS
(MRI) 4 [1], Spleen (CT) [22]. Annotating 3D images is challenging due to their
high dimensionality. A common approach is to divide them into 2D slices for eas-
ier labeling. To simulate this process, datasets are split by slices into training
(7,750 BraTs, 2,525 Spleen), validation (2,170 BraT§S, 1,860 Spleen), and test
sets (644 BraT$, 481 Spleen) subject-wise.

Ten widely used methods, covering all major types of query strategies and
SSAL methods, are selected for comparison. These include uncertainty-based
methods (Margin (Marg) [15], Entropy (Ent) [18], MC-Dropout (MC-D)
[5]), diversity-based methods (Random (Rand), K-Center Greedy (KCG)
[16]), and hybrid methods (BAL [8]), and SSAL methods (CEAL(Marg) [26],
CEAL(Ent) [26], CEAL(MC-D) [26], TAAL [4]).

The initial labeling interval j is set to 10. To simulate AL’s interactive selec-
tion, 100 slices are queried with 100 pseudo-labels per iteration for BraTS, while

4 As FLAIR is the most common MRI sequence for pathology visualisation and seg-
mentation, this study uses the LGG FLAIR sequence for tumor core segmentation.
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50 slices are queried with 50 pseudo-labels per iteration for Spleen. The segmen-
tation model is ResNet-50 [7], trained with the Adam optimizer at a learning
rate of 0.0001 for supervised training and 0.00001 for incremental training. Batch
sizes are 32 for BraTS and 16 for Spleen, with a maximum of 100 epochs. Each
AL iteration continues until the validation loss converges, with early stopping
patience of 5 epochs. Model parameters are fine-tuned incrementally for effi-
ciency. All experiments are conducted on an NVIDIA GeForce RTX 4090 with
consistent hyperparameters.

Segmentation performance is evaluated with the Dice coefficient [29]. To
compare various AL methods, we track test performance at each step during
AL process until the performance stabilizes, recording the peak performance
achieved. The performance is reported at 5% data intervals, starting from 15%
up to stabilization (e.g., 30%). All experiments were performed 5 times with
different random seeds, and the average across these runs is reported. Further-
more, we measure the minimum labeled slices required to match fully supervised
performance, assessing each method’s efficiency in reducing annotation effort.

3.2 Experiment Results

The experimental results for BraT§S and Spleen are shown in Table 1. STAR out-
performs all methods across all percentage levels, except at 30% in Spleen, where
it remains competitive. The fewer labeled samples available, the greater STAR’s
advantage, highlighting its effectiveness in selecting informative samples. With
labeled data increases, performance differences across methods converge due to
diminishing returns. Notably, STAR is the only method to reach supervised per-
formance in BraTS with just 19.4% of the data and in Spleen with only 460
labeled slices (18.2%). In comparison, CEAL(MC-D) (second) requires 50 more
labeled slices (510, 20.2%) and TAAL (third-best) requires 150 (610, 24.2%),
demonstrating STAR’s efficiency in reducing annotation effort.

To better assess segmentation performance, we visualize predictions and com-
pare them to ground truth masks. Fig. 2 shows representative results from the
five best-performing methods on BraTS and Spleen, featuring slices with large
and small lesions. Large lesions are generally easier to segment, while small ones
are the most challenging. Compared to other methods, STAR produces clearer,
more accurate boundaries for large lesions (shown in Fig. 2(vii)). For small le-
sions, other methods often over- or under-segment or fail to detect the target
(shown in Fig. 2(iii)-(vi)), while ours predicts accurately. These results highlight
STAR’s efficiency in leveraging limited labeled data.

To further investigate STAR’s effectiveness in generating pseudo-labels via
spatial aggregation, we compare pseudo-label accuracy with and without the spa-
tial aggregation on BraTS. Fig. 3b shows that spatial aggregation substantially
improves pseudo-label accuracy by approximately 3% across various labeled data
percentages. Fig. 3a(i) and (iv) illustrate that spatial cross-attention accurately
identifies useful anatomical information (tumor areas in red) in nearby slices.
Fig. 3a(iv) shows STAR’s pseudo-label closely matching the ground truth (Fig.
3a(iil)), demonstrating the accuracy of our proposed spatial aggregation.
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Fig. 2: Examples of segmentation results on BraTS (top two rows, 20% training
data) and the Spleen (bottom two rows, 15% training data). (i) Original slice, (ii)
Ground truth, (iii) MC-D (BraTS) / Rand (Spleen), (iv) KCG (BraTS) / Marg
(Spleen), (v) CEAL(Ent) (BraTS) / CEAL(MC-D) (Spleen), (vi) CEAL(MC-D)
(BraTS) / TAAL (Spleen), (vii) STAR.

Table 2: Ablation study on BraTS. Agg denotes the proposed Spatial Aggrega-
tion, while Sim refers to the spatial similarity-based query strategy (Section 2.2).
CEAL applies a general pseudo-labeling approach [26]. maxz(p) is the highest
performance. S% is the minimum data percentage needed to match supervised
performance. The best approach is highlighted in red.

Agg [Sim 15% 20% 25% 30% max(p) S%

X x | 0.806 £ 0.025 | 0.819 £ 0.010 | 0.828 4+ 0.014 | 0.833 £ 0.006 | 0.833 £ 0.006 -

X v’ | 0.827 £ 0.014 | 0.825 £ 0.010 | 0.816 4+ 0.031 | 0.827 £ 0.018 | 0.833 £ 0.018 -

v x | 0.825 £ 0.021 | 0.821 £ 0.010 | 0.824 + 0.012 | 0.821 & 0.012 | 0.834 £ 0.012 | 1700 (21.9%)
CEAL| v | 0.812 £ 0.024 | 0.836 &+ 0.013 | 0.819 £ 0.007 | 0.828 + 0.008 | 0.836 + 0.013 (1500 (19.4%)
v v |0.828 + 0.006|0.837 £ 0.007/0.830 + 0.008/0.834 + 0.005|0.837 + 0.007|1500 (19.4%)

3.3 Ablation Study

STAR utilizes spatial correlations in two components: spatial aggregation (Sec-
tion 2.1) and the spatial-similarity-based query strategy (Section 2.2). To eval-
uate their impact and functionality, we conduct an ablation study by removing
each component separately. Additionally, we replace spatial aggregation with
another semi-supervised method (e.g., CEAL [26]) to further examine its effec-
tiveness. Experiments are performed on BraTS, with the average performance
reported over three runs due to the computational cost.

Table 2 presents the ablation study results. When the similarity-based query
strategy is inactive, the model with spatial aggregation (row 3) outperforms
the one without it (row 1) at smaller training sizes (15%—20%) and achieves
similar performance at 25%-30%. This may be because, as labeled training
data increases, the influence of pseudo-labels on training decreases. When the
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Fig. 3: Pseudo-label Effectiveness. (a): (i) First slice in the group with attention
map, (ii) Unlabeled slices, (iii) Ground truth, (iv) Pseudo-labels, (v) Last slice
with attention map. Attention maps reflect similarity, where the blue regions
indicate areas of high similarity. (b): Accuracy is measured by averaging dice
score of predictions across all iterations. Without aggregation, pseudo-labels rely
solely on the model’s predictions.

similarity-based query strategy is active, the model with spatial aggregation (row
5) surpasses the one without it (row 2) across all data percentages, except at
15%, where the difference is minimal. This improvement is due to spatial ag-
gregation refining segmentation, which enhances pseudo-label quality. A more
accurate segmentation model further improves pseudo-label reliability, creating
a reinforcing feedback loop that drives continuous performance gains. Addition-
ally, comparing spatial aggregation (row 5) to CEAL (row 4) shows that spatial
aggregation consistently outperforms CEAL, demonstrating its effectiveness in
pseudo-label generation.

The spatial similarity-based query strategy also positively impacts model
performance. When enabled (rows 2 and 5), it improves results across most
labeled data percentages compared to when disabled (rows 1 and 3), except at
25% and 30%. This is because as the training data increases, the model has
already learned sufficient information, reducing the impact of example selection
and pseudo-labels on further improving performance. Furthermore, comparing
rows 3 and 5 confirms that combining the similarity-based query strategy with
memory aggregation reinforces both components, yielding better segmentation
performance than either approach alone.

4 Conclusions

This paper focuses on an unexplored research question: how to leverage spa-
tial information in 3D medical images to reduce labeling costs. To tackle this
challenge, we propose a novel SSAL framework called STAR. STAR is the first
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algorithm to use the spatial relationships between 2D slices in 3D medical im-
ages to effectively select instances for label querying and improve the accuracy
of pseudo-labels, thereby reducing labeling costs and enhancing segmentation
performance.

We evaluate STAR on two public 3D medical image datasets, demonstrat-
ing its superiority over existing methods. Notably, STAR enables the segmen-
tation model to achieve fully supervised performance with only 18%-19% of
labeled data. Currently, STAR incorporates only high-confidence pseudo-labels
into training. Future work includes integrating more unlabeled data via con-
sistency regularization or contrastive learning to enhance distribution under-
standing and reduce labeling costs, exploring random initialization for better
generalization and applying the proposed method at the 3D patch level.

Acknowledgments. This research was conducted with the financial support of Sci-
ence Foundation Ireland (SFI) to the Insight Centre for Data Analytics under Grant
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