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Abstract. Brain disease diagnosis and treatment planning rely on com-
plementary information from multiple MRI modalities. Compared to rou-
tine modalities (RM) such as T1, T2, and FLAIR, modalities like DWI and
T1ce provide unique diagnostic information but are less commonly used
due to longer scan times, higher costs, or the need for contrast agents. To
mitigate this, multi-modal MRI synthesis methods are proposed to gen-
erate advanced MRIs from routine MRIs. However, in clinical practice,
missing modality is a known issue in MRI generation which degrades
the synthesis quality. Existing methods typically use shared encoders
and masking strategies to compensate for missing modality. However, as
the number of missing modalities increases, it becomes harder to cap-
ture the inter-modal correlations, causing a sharp performance drop.
To address this, we propose the Feature Mapping and Merging Diffu-
sion Model (FMM-Diff). Instead of using a shared encoder, we intro-
duce dedicated mapping encoders for each modality. When a modality
is missing, its latent representation is inferred from the available ones
via its dedicated encoder. This ensures complete latent representations,
allowing the Merge Module to selectively extract and fuse inter-modal
correlations, significantly improving synthesis performance. Evaluated on
two public MRI datasets, including CGGA and BraTS2021, FMM-Diff
not only outperforms the state-of-the-art models by 4.35% in terms of
Structural Similarity Index Measure (SSIM) while demonstrating excep-
tional stability, with less than a 1.0% SSIM drop, which is significantly
lower than the 2.0–3.45% drop observed with other methods, across var-
ious missing modality scenarios.The source code will be available at:
https://github.com/ZJohnWenjin/FMMDIFF.git

Keywords: Diffusion Models · Multiple Modalities · MRI Synthesis ·
Latent Space · Missing Modalities.
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Fig. 1. SSIM comparison across different input modalities on two datasets.

1 Introduction

Magnetic Resonance Imaging (MRI) is pivotal in diagnosing brain diseases, offer-
ing various imaging sequences that accentuate distinct tissue characteristics [9,7].
Routine modalities, such as T1, T2, and FLAIR, are extensively utilised. How-
ever, advanced modalities (AM), such as Diffusion-Weighted Imaging (DWI) and
T1-weighted contrast-enhanced Imaging (T1ce), provide essential diagnostic in-
formation beyond the capabilities of routine MRI (RM) [12,13]. Despite their
diagnostic advantages, these advanced techniques are often costlier and more
technically demanding, limiting their routine clinical application.

Recently, generative models have shown remarkable success in multi-modal
MRI generation [8,21,1,16], inspiring us to explore their potential for generating
AM from RM. Among them, Diffusion Models have demonstrated superior training
stability and the ability to generate high-quality images [4,6,10,11,23], outper-
forming conventional GAN-based methods [3,21,19]. However, a key challenge
in data generation is the missing modality issue. Therefore, previous models
that rely on complete RM inputs experience significant performance degradation
due to their inability to capture information from missing modalities. To ad-
dress the challenge of missing MRI modalities, several approaches have been
developed. ShaSpec [15] utilises a shared encoder to learn representations from
all available modalities, effectively approximating any absent ones. Addition-
ally, FgC2F-UDiff [17] and the Multi-Modal Modality-Masked Diffusion Net-
work (M2DN) [10] employ modality masking strategies to enhance adaptability
to incomplete inputs. Zhang et al. [22] propose a GAN-based model to gener-
ate missing modalities from any combination of existing ones. While effective,
their performance significantly deteriorates as the number of missing modalities
increases, as shown in Fig. 1. This decline occurs because the shared encoder
extracts less information with each missing modality, and the masking strat-
egy struggles to capture inter-modality correlations, leading to a sharp drop in
performance.

Accordingly, we propose the Feature Mapping and Merge Diffusion Model
(FMM-Diff), which comprises the Feature Mapping Module (FMM) and the
Multi-Modal Feature Share and Merge Module (MFSM). The FMM includes a
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Fig. 2. Architecture of the proposed FMM-Diff model.

dedicated encoder and a mapping encoder for each input modality. When one or
more modalities are missing, their mapping encoders utilise the available modal-
ities to reconstruct their latent representations, effectively compensating for the
missing information. Once the FMM obtains the latent features for all modalities,
the MFSM employs an attention mechanism to efficiently extract inter-modal
correlations and fuse features from different modalities accordingly. The synergy
between these two modules allows FMM-Diff to remain effective and stable, even
when only a single input modality is available. Our main contributions include:

– Technical innovation: we propose a novel diffusion-based model (FMM-Diff)
for MRI generation with missing modalities. It comprises a Feature Map-
ping Module (FMM) to reconstruct latent representations of missing modal-
ities using the existing modalities, and a Multi-Modal Feature Share and
Merge (MFSM) module to effectively fuse the correlative information be-
tween modalities.

– Extensive evaluation: extensive experiments were preformed on two pub-
lic datasets, i.e., CGGA and BraTS2021, and FMM-Diff’s performance was
compared to four state-of-the-art (SOTA) methods across various scenarios
with missing input modalities. FMM-Diff demonstrates superior performance
in all tested input modality scenarios, and remains effective even when only
one single input modality is available.
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2 Methods

As shown in Fig. 2, FMM-Diff is a U-Net-based diffusion framework. During
training, we employ a two-stage training strategy. In the first stage, we train our
proposed Feature Mapping Module (FMM) (Section 2.2 (a)) using the complete
set of RM. Once FMM is trained, it encodes RM as conditional input for the second
stage (Section 2.2 (b)), where the standard reverse diffusion process is performed.
Meanwhile, Multi-Modal Feature Share and Merge (MFSM) (Section 2.3) is em-
ployed in the bottleneck layer to model inter-modal correlations. During testing,
when certain modalities are missing, FMM infers their latent representations
from the available modalities, and MFSM selectively merges them based on cor-
relation. This ensures FMM-Diff to remain highly effective for missing modality
multi-modal generation of AM.

2.1 Diffusion model

Forward Diffusion Process The diffusion model [5] follows a Markov chain-
based approach over T timesteps. The forward process is defined as the gradual
addition of Gaussian noise to an initial AM sample, xt=0, over T timesteps until it
becomes a fully corrupted noise image, xt=T . Formally, this process is modelled
as a conditional probability distribution, q(xt+1|xt), where each forward step
can be explicitly expressed as:

xt =
√
ᾱtx0 +

√
1− ᾱtϵ, ϵ ∼ N (0, I) (1)

Here, ᾱt =
∏t

i=1 αi, where αt = 1 − βt and βt is the variance of the additive
preschedual noise at the current timestep t.

Reverse Diffusion Process The reverse process gradually reconstructs xt=0

by iteratively denoising xt=T through a learned conditional distribution. In this
work, FMM-Diff is employed for this reverse process. It takes the state of current
timestep xt, time embedding t, and N available modalities {Mn}Nn=0 as inputs
to obtain the previous state xt−1 with pθ(xt−1 | xt, t, (Mn)

N
n=0), where θ is is the

learnable parameters in the backbone model (µθ) and any reverse process step
can be written explicitly as:

xt−1 =
1

√
αt

(
xt −

1− αt√
1− ᾱt

µθ(xt, t, {Mn}Nn=0)

)
+
√
1− αtµθ(xt, t, {Mn}Nn=0),

(2)
During training, µθ(xt, t, {Mn}Nn=0) optimised by minimizing the mean squared
error between the mean of predicted noise and the added noise using:

Lmse = Ex0,ϵ,t

[
∥ϵ− µθ(xt, t, {Mn}Nn=0)∥2

]
ϵ ∼ N (0, I) (3)
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Fig. 3. FMM: Module pretraining shown as (a,b) and employing (c,d).

2.2 Feature Mapping Module

a) FMM Pretraining. As illustrated in Fig. 3, for each input modality Mn,
we introduce a dedicated encoder En, and a mapping encoder Pn. Both share
the same architectural structure as the backbone and utilize the same decoder
Dn. Specifically, En and Dn are trained by minimizing the reconstruction error
of Mn using Mean Squared Error loss (MSE):

Lmse = E
[
∥Mn −Dn(En(Mn))∥2

]
(4)

To train Pn, we first freeze the parameters of Dn and use Pn to encode the
remaining modalities My (where y ∈ {1, 2, . . . , N} and y ̸= n). Then, Dn recon-
structs Mn from the features generated by Pn, as illustrated in Fig. 3 (b). This
training process is formulated in Equation 5:

Lmse = E
[
∥Mn −Dn∗(Pn(My))∥2

]
(5)

where Dn∗ represents the dedicated encoder with frozen parameters. The above
training is conducted before µθ’s training and it ensures that Pn encodes the My

into the latent space of Mn even when Mn is missing.

b) FMM Deloyment When all the {En}Nn=1and {Pn}Nn=1 are fully trained, we
freeze their parameters and leverage them to facilitate the training of µθ which is
equipped with MSFM. To effectively integrate information from different modal-
ities into the backbone, we perform element-wise summation on the outputs from
each intermediate layer of {Pn}Nn=1 and {En}Nn=1 and integrate them into the
corresponding layers of the backbone, as shown in Part A of Fig. 2. Moreover,
the final outputs of FMM, {Fn}Nn=1, are used as inputs to MSFM. During train-
ing, when all modalities are available, the features from Pn(My ̸=n) are added
to those from En(Mn), serving as a feature enhancement (Fig. 3 (c)). In con-
trast, during testing, when a modality Mn is missing, Pn leverages the available
modalities My to compensate the feature for missing modalities Mn, shown as
Fig. 3 (d). This ensures that MSFM consistently receives features from complete
modalities, thereby improving overall performance.
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2.3 Multi-Modal Feature Share and Merge Module

Multi-Modal Feature Share and Merge Module (MSFM) is proposed to extract
and integrate {Fn}Nn=1 generated by FMM. MSFM not only recalibrates feature
importance both within each modality and across modalities, but also leverages
time-step-specific bottleneck features as queries to selectively retrieve relevant
cross-modal features for effective fusion, as shown in Part B of Fig. 2.
Local Feature Aggregation. MSFM first aggregates features within each
modality. Each output feature {Fn}Nn=1 undergoes Global Average Pooling fol-
lowed by the Sigmoid activation to compute the average channel-wise weights
and map them into the range [0, 1], producing local aggregated feature {Cn}Nn=1.
Inter-modal Feature Aggregation. Next, to capture inter-modal relation-
ships, {Cn}Nn=1 are concatenated along the last dimension and apply a Softmax
operation [18] to refine the weight distribution across modalities, forming Cs.
Then, Cs is split and element-wise multiplied with their corresponding features
Fn, yielding {Gn}Nn=1. Finally, as the bottleneck layer bn contains highly con-
densed information, we resort to cross-attention [14] which treats the bottleneck
feature as a query (Qb) to selectively extract relevant information from {Gn}Nn=1:

xG = Cat(

N∑
n=0

(
QbK

⊤
Gn

)√
dKGn

VGn) (6)

Here, Cat stands for concatenation. After obtaining xG, we use a convolutional
layer with a kernel size of 1 to adjust the dimensionality before integration into
the bottleneck layer. Then, backbone continues the decoding process with this
modality-fused information.

3 Experiments and Results

3.1 Datasets and Experimental Setup

The CGGA database [20] contains 2,426 patients, each with four modalities:
T1, T2, FLAIR, and DWI (b=1000). The task involves generating DWI (AM) from
T1, T2, and FLAIR (RM). The dataset is randomly divided into 1,941 patients
(80%) for training and 524 patients (20%) for testing. During preprocessing, all
modalities are registered to the T2-weighted images to ensure proper alignment.
The BRATS 2021 dataset [2] includes MRI scans from 1,251 glioma patients,
each with four modalities: T1, T2, T1ce, and FLAIR. The task involves gener-
ating T1ce (AM) from T1, T2, and FLAIR (RM). The dataset is randomly split
into 1,000 patients (80%) for training and 251 patients (20%) for testing.

Experimental Setup The models were developed using PyTorch 1.12.1 on an
NVIDIA A100 GPU. We employed a diffusion process with T = 1000 steps, a
learning rate of 3×10−5, and a batch size of 4. The noise variances β ranged from
1e-4 to 0.02, with a linear noise schedule applied. Following [17,10], model perfor-
mance was evaluated using Peak Signal-to-Noise Ratio (PSNR) and Structural
Similarity Index Measure (SSIM).



FMM-Diff for MRI Generation with Missing Modality 7

Table 1. Performance comparison on CGGA database and BRATS 2021 datasets.

Modalities CGGA Database
ShaSpec UMGAN M2DN FgC2F-UDiff FMM-Diff

T1 T2 FL PSNR SSIM% PSNR SSIM% PSNR SSIM% PSNR SSIM% PSNR SSIM%

• ◦ ◦ 24.4 83.6 25.6 83.6 28.6 86.5 30.7 89.4 32.8 92.1
◦ • ◦ 25.2 84.8 25.0 84.4 27.3 85.9 29.4 88.3 32.6 92.4
◦ ◦ • 24.1 83.5 24.6 84.1 28.2 86.1 29.1 88.0 32.6 92.2
• • ◦ 27.8 86.2 27.2 86.6 29.8 88.4 31.7 90.4 33.7 92.8
◦ • • 28.9 87.2 27.7 86.0 30.2 89.2 30.9 89.9 33.8 93.1
• ◦ • 27.7 86.7 28.6 87.3 28.8 87.9 32.2 91.2 34.0 93.0
• • • 29.1 88.4 29.7 89.1 32.0 91.1 32.9 92.2 34.4 93.7

Modalities BRATS 2021
ShaSpec UMGAN M2DN FgC2F-UDiff FMM-Diff

T1 T2 FL PSNR SSIM% PSNR SSIM% PSNR SSIM% PSNR SSIM% PSNR SSIM%

• ◦ ◦ 28.0 86.8 27.8 86.6 30.6 88.5 32.3 90.1 33.6 91.9
◦ • ◦ 26.7 85.2 26.3 85.2 30.2 87.8 30.8 88.9 32.8 91.1
◦ ◦ • 26.7 85.9 26.8 85.4 29.4 87.5 31.6 89.5 33.1 91.5
• • ◦ 30.4 87.9 30.1 88.1 31.6 89.7 32.9 91.1 33.5 92.0
◦ • • 29.8 87.7 30.8 89.0 31.2 89.4 31.7 90.7 33.1 91.9
• ◦ • 30.7 88.3 30.4 88.1 31.9 90.2 33.2 91.2 34.1 92.4
• • • 31.1 89.8 31.8 90.2 32.4 91.0 33.3 91.6 34.2 92.7

3.2 Experimental Results

Quantitative Results We conducted experiments on two datasets, using RM

(T1, T2, and FLAIR) to generate AM (T1ce or DWI). We compared FMM-Diff
with four state-of-the-art multi-modal learning approaches for missing modality
generation: ShaSpec [15], UMGAN [22], M2DN [10] and FgC2F-UDiff [17]. Ta-
ble 1 demonstrates that FMM-Diff achieves the best performance in all missing
modality scenarios. On the CGGA dataset, FMM-Diff outperforms the best-
competing models, FgC2F-UDiff, with a 1.3 dB improvement in PSNR and a
1.5% increase in SSIM when all RM modalities are available. Even in extreme
cases with only one input modality is avilable (e.g., only FL), FMM-Diff main-
tains the best performance, surpassing FgC2F-UDiff by 3.5 dB in PSNR and
4.2% in SSIM. Furthermore, when transitioning from full-modality scenarios to
multi-modal missing scenarios, FMM-Diff experiences an average drop of only
1.12 dB in PSNR and 1.10% in SSIM, respectively, whereas other models exhibit
declines more than twice as large. Similarly, on the BraTS2021 dataset, FMM-
Diff exhibits an average drop of just 0.83 dB in PSNR and 0.90% in SSIM. This
stability is further illustrated in Fig. 1, where FMM-Diff remains consistently
stable across various missing modality scenarios. We attribute this resilience to
the integration of FMM and MFSM, which effectively compensate for missing
modalities and preserve inter-modal correlations.

Qualitative Results Fig. 4 presents visualisations of the generated AM along
with SSIM values using FMM-Diff. We compare results across different missing
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Fig. 4. Visualisation and SSIM comparison between FMM-Diff and FgC2F-UDiff under
different missing modality scenarios.

Table 2. Ablation study on CGGA database and BRATS 2021 datasets.

CGGA Database (DWI) BRATS 2021 (T1ce)

Available modalities w/ Both w/o FMM w/o MSFM w/ Both w/o FMM w/o MSFM
PSNR SSIM% PSNR SSIM% PSNR SSIM% PSNR SSIM% PSNR SSIM% PSNR SSIM%

All available 34.2 93.7 32.4 92.1 31.6 90.6 34.4 92.7 32.2 90.9 32.1 90.9
w/o one modality 33.8 93.0 30.7 90.1 32.0 91.2 33.6 92.1 30.9 89.2 32.7 91.1
w/o two modality 32.7 92.2 28.8 87.0 32.1 90.9 33.2 91.5 30.4 88.3 31.4 90.5

modality scenarios, including all modalities (All), one missing modality (w/o
T1), and a single available modality (only T1). FMM-Diff consistently produces
high-quality results. As shown in Fig. 4, even as the number of input modalities
decreases, FMM-Diff is still able to generate complete and detailed results in
lesion regions. In contrast, FgC2F-UDiff exhibits a noticeable decline in lesion
areas as the number of available RM modalities decreases.

Ablation Study We evaluated the effectiveness of each component in FMM-
Diff on two datasets with different missing modalities. The average performance
over different modality combinations is reported in Table 2. The results indicate
that each component contributes to overall performance improvement. Specif-
ically, FMM provides a maximum PSNR gain of 3.9 dB and an SSIM increase
of 5.2%, while MFSM improves PSNR by up to 2.6 dB and an SSIM by 3.1%.
Furthermore, the results indicate that as more input modalities are missing,
the FMM provides greater performance gains. This suggests that the module
effectively maps available modalities into the latent space of missing modalities,
enabling the model to retain comprehensive input modality information.

4 Conclusion

This paper introduces FMM-Diff, a diffusion-based framework for missing modal-
ity MRI synthesis. It leverages the Feature Mapping Module to infer features of
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missing modalities from available modalities and employs the Multi-Modal Fea-
ture Share and Merge Module to integrate inter-modal correlations, ensuring
robust inference even in the presence of missing inputs. Experimental results
demonstrate that FMM-Diff outperforms state-of-the-art models in various sce-
narios with missing input modalities. In conclusion, FMM-Diff serves as an effec-
tive MRI synthesis tool, generating high-quality modality-specific images with-
out requiring full set of training MRI sequences.
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