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Abstract. Learning from noisy ordinal labels is a key challenge in med-
ical imaging. In this work, we ask whether ordinal disease progression
labels (better, worse, or stable) can be used to learn a representation
allowing to classify disease state. For neovascular age-related macular
degeneration (nAMD), we cast the problem of modeling disease progres-
sion between medical visits as a classification task with ordinal ranks. To
enhance generalization, we tailor our model to the problem setting by
(1) independent image encoding, (2) antisymmetric logit space equivari-
ance, and (3) ordinal scale awareness. In addition, we address label noise
by learning an uncertainty estimate for loss re-weighting. Our approach
learns an interpretable disease representation enabling strong few-shot
performance for the related task of nAMD activity classification from
single images, despite being trained only on image pairs with ordinal
disease progression labels1.

Keywords: Few-Shot Learning · Ordinal Labels · Label Noise · Age
Related Macular Degeneration · Optical Coherence Tomography.

1 Introduction

Changes apparent in medical images can be informative about the progression of
a disease, playing a critical role in guiding clinical decision making, particularly
for conditions requiring timely interventions. One such example is the treatment
of neovascular age-related macular degeneration (nAMD) with anti-vascular en-
dothelial growth factor (anti-VEGF) therapy. Here, the treatment is guided by
the presence and extent of exudative signs, such as intraretinal and subretinal
fluid as relevant biomarkers [19]. These are best assessed with optical coherence
tomography (OCT) imaging. Accurate prediction of disease progression in this
context could help to optimize treatment schedules and improve patient out-
comes. Different deep learning approaches have been proposed to analyze AMD
based on individual OCT B-scans, including disease activity classification [1, 13],
biomarker identification [11, 8], and disease progression modeling [18, 4].

Interestingly, judging disease progression between OCT B-Scan pairs is known
to be easier and less biased for clinicians than assigning categorical severity scores
1 https://github.com/berenslab/Learning-Disease-State
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Fig. 1. Overview figure of the proposed approach. (a) Our Siamese model analyses two
OCT B-scans (c), outputs the probability of being ungradable (ŷo), and predicts the
disease progression (ŷd). (b) For disease progression prediction our model internally
learns a disease state space (zd) for each image. (d) Moreover, we fit an uncertainty
estimate for each image pair to account for label noise. σ(·) is the sigmoid function.

to individual B-Scans used in the studies cited above, also because it is closer to
the clinical task performed in a routine assessment [12]. Here, we ask whether we
can use such coarse, ordinal information about whether nAMD has improved,
worsened, or remained stable between two visits (Fig. 1 c) to learn about the
underlying continuous disease state. While ordinal regression has been explored
in machine learning [3, 21, 7] and medical imaging [2, 22, 6, 16, 10], conventional
methods neither preserve the continuity of the label space by discretizing K
labels into K-1 binary tasks nor do they take noisy labels into account. Here,
we introduce a method that is able to learn a continuous and interpretable dis-
ease state from noisy ordinal disease progression labels. Importantly, unlike [14],
where they require Euclidean distances to healthy anchors, our model learns a
continuous disease state directly, without such constraints.

To this end, we used the MARIO challenge dataset [23] from MICCAI 2024,
which consists of labeled image pairs indicating the disease progression between
two patient visits. We frame disease progression between medical visits as a
classification task with ordinal ranks (Fig. 1a,b). To enhance generalization and
interpretability, we propose the following model design choices:

1. Independent image encoding: We encode a scalar disease state for each
image independently (Fig. 1a) to ensure that the model, although trained
on labeled image pairs, retains a meaningful disease state representation on
image level (Fig. 1b).

2. Antisymmetric logit space: Since disease progression labels capture dif-
ferences between image pairs, we directly model progression as the difference
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between two disease states Fig. 1b). This enforces an antisymmetric equiv-
ariant logit space – derivable from a property of the sigmoid function.

3. Ordinal scale awareness: Unlike conventional ordinal regression, our method
considers both order and known distances between labels. This results in a
continuous, structured and interpretable representation of disease progres-
sion, capturing intraclass and interclass relationships.

4. Uncertainty-aware loss re-weighting: We mitigate the impact of label
noise with an uncertainty estimation by a learnable slope parameter for
the sigmoid function (Fig. 1d) for loss re-weighting [20]. This accounts for
different sources of label noise, allowing the model to better capture inherent
ambiguities in clinical grading.

We then show that the learned representation leads to strong few-shot out-of-
distribution performance on an in-house OCT dataset labeled for nAMD activity.

2 Methods

2.1 Dataset and Preprocessing

For training and evaluation, we used the MARIO challenge data [23], specifically
the development set with 14,496 labeled OCT B-scan pairs from 68 patients,
each up to 10 visits per patient. All OCT volumes were acquired with Heidel-
berg Spectralis and volumes were registered between consecutive visits using the
Spectralis follow-up option. To standardize the input dimension, we padded all
images to match the largest resolution occurring in the dataset (496 × 1024).
Furthermore, we applied training-time data augmentation, ensuring that the
same augmentations were applied for both images out of a pair. Augmentations
included random resize cropping between 20%-100% of the original size, resized
to 224× 385, and random horizontal flipping. We split our dataset patient-wise
in 85% for training (5-fold cross-validation) and 15% for testing.

2.2 Problem Setting

The B-scan image pairs were annotated by ophthalmologists into seven initial
classes, which were later simplified into three disease progression classes bet-
ter, worse, stable, and one other category for ungradable image pairs (Fig. 1 c).
Therefore, the challenge framed the task as a 4-class classification problem, where
the disease progression labels are on an ordinal scale with symmetric distances
– the stable class is between better and worse.

2.3 Obtaining Disease State from Coarse Progression Labels

We used a Siamese neural network to process labeled B-scan pairs (Fig. 1a).
However, instead of training an off-the-shelf Siamese network on the 4-class task
using the concatenation of high-dimensional latent representations from each
branch, like in [4, 16], we tailored our model to the problem setting to enhance
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interpretability and generalization. Because, the other class is a very different
category than the disease progression categories, we separated the disease infor-
mation and the other class with two independent heads (zd and zo in Fig. 1b)
and treated both heads as independent classification tasks. Moreover, we forced
every branch to output a scalar and hence a more interpretable output on image-
level before computing information on image-pair level for the classification tasks
where we had labels. This has the advantage that our model predicts a disease
state zd for each B-scan individually, even though we only train it on labeled
B-scan pairs. Then, we reasoned that disease progression prediction is mainly
about the difference between the image pairs. In theory, we could subtract regis-
tered B-scan pairs from each other and operate on difference images, however, to
be more robust to possible registration errors and other noise differences between
visits, we computed the differences in the logit (unnormalized log probability)
space. Therefore, we predicted the disease progression with

ŷd(x1,x2) = σ(∆d) =
1

1 + e−∆d
, ∆d = zd,1 − zd,2. (1)

Estimating disease progression is akin to a binary classification task with the two
classes worse =̂ 0 and better =̂ 1. However, our setup extended binary classifica-
tion with a third label stable =̂ 0.5. By setting the labels in this way, they inher-
ently follow the order and known distances between our labels by positioning the
stable class between better and worse (Fig. 1d). However, unlike conventional
ordinal regression methods that discretize K labels into K-1 binary tasks, our
approach preserved continuity of the disease progression space, highlighting intr-
aclass and interclass relationships. This extension also leads to an antisymmetric
equivariance with respect to the image order, so that ŷd(x1,x2) = 1−ŷd(x2,x1),
which assumes that matching pairs in both time directions (forward and back-
ward) helps learning about disease progression. Even if this inductive bias is not
strictly true, as e.g. fluids in the retina may leave lasting traces, we empirically
found that the resulting model can be used to detect the presence of biomarkers
like intra- and subretinal fluids.

For the other binary classification task, we merged the two other head pre-
dictions for the individual images with a logical OR operation – if at least one
image of the pair is ungradable, e.g., due to noise, then the model should already
predict the other class. We applied De Morgan’s laws to reformulate the other
prediction to the differential computation

ŷo(x1,x2) = p((x1 is other) ∨ (x2 is other)) (2)
= 1− (1− σ(zo,1)) · (1− σ(zo,2)) = 1− σ(−zo,1) · σ(−zo,2) (3)

where σ(x) is the sigmoid function with the property 1− σ(x) = σ(−x).
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2.4 Modeling Label Noise

To model label noise and account for uncertain examples, we included a learnable
slope parameter γ (Fig. 1d) into the disease progression tasks sigmoid function

ŷd(x1,x2) = σ(∆d, γ) =
1

1 + e−γ·∆d
(4)

to give our model the possibility to set this parameter for every B-scan pair at
training time. Intuitively, we interpreted the γ values as an uncertainty estimate
for each image pair, where lower and higher values than γ = 1 referred to higher
and lower uncertainty, respectively (Fig. 1d). However, γ could also be misused
as a shortcut by the model for “hard” to classify image pairs by setting γ very
low and hence achieve lower loss on those samples. Therefore, we introduced a
regularizer, which regularizes γ to be close to its default value γ = 1. We defined
γ = 2α and add |α| as a regularizer to the final optimization problem

θ∗, ψ∗
1 , ψ

∗
2 , α

∗ = argmin
θ,ψ1,ψ2,α

BCE(yo, ŷo) + BCE(yd, ŷd) + λ|α| (5)

with BCE as the binary cross entropy loss. We balanced the dataset with a
weighted random sampler and trained all models with 5-fold cross-validation, a
ResNet50 [9] backbone and AdamW [15] optimizer (lr = 10−4) for 60 epochs
and selected the model by the best validation loss. For our models with noise
estimation, we set λ = 0.15, selected by grid search.

3 Results

3.1 Disease Progression Classification

We used the MARIO OCT B-scan dataset [23] to train our architecture suitable
for handling ordinal disease progression labels (Fig. 1) and first evaluated it for
disease progression classification on the metrics of the MARIO challenge [17]. We
compared its performance to a naïve classifier (clf.) trained for a 4-class problem
with categorical cross-entropy. Here, the naïve classifier was a Siamese model
which concatenates high-dimensional image embeddings from each branch and
processes them through learnable layers to the final classification output, without
producing interpretable scalar per-image outputs. For our model, to assign each
point in ŷd to a class, we optimized a symmetric decision boundary around 0.5

Table 1. Classification performance (in %) for disease progression.

Model F1 Score Rk-corr. Specificity Bal. Acc. Precision Recall

naïve clf. 70± 5 44± 4 87± 1 60± 3 57± 3 60± 3
ours 61± 7 36± 5 86± 1 59± 5 47± 3 59± 5
ours + noise estim. 60± 7 36± 6 86± 2 60± 4 47± 4 60± 4
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Fig. 2. Our model maps coarse ordinal labels to a continuous variable ∆d that pre-
serves ordinal ranks. (a1) ∆d (averaged over folds) vs. the probability of belonging to
the other class for training data. (a2) Examples with low probability of other illus-
trating the graded nature of disease progression judgments, with the magnitude of ∆d

corresponding to the magnitude of observed changes. (a3) Examples with ”incorrect“
predictions compared to the ground truth labels. Top: Labeled as better, but looks
stable, as indicated by ∆d. Middle: Labeled as stable, but looks improved, reflected in
∆d. Bottom: Labeled worse, but looks stable and noisy captured by ŷo. (b1-b3) as in
(a1-a3) but for test data. (GT: ground truth, P: prediction).

based on the validation data. Our model performed comparable to the the naïve
classifier (Table 1) for specificity, balanced accuracy and recall. However, in other
metrics like the F1 score, our model showed reduced performance, mainly due
to the performance for the stable class. While the focus of this work was not on
optimizing performance for the disease progression classification task, our model
would have been placed 17/21 on the MARIO leaderboard, when evaluated on
15% of the training data in the cross-validation setting (as we did not have access
to the MARIO validation set which was used to rank the participants).

However, compared to the naïve classifier, our model internally learned a con-
tinuous disease progression representation ∆d. We qualitatively analyzed what
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Fig. 3. Modeling label noise via uncertainty parameter. (a) Lower uncertainty param-
eter γ (averaged over folds) is observed for images with ∆d ≈ 0, indicating higher
uncertainty. (b) Example images show that γ reflects various noise sources: acquisition
noise, mislabeling and registration errors (top-bottom). (GT: ground truth).

additional information this representation could provide both for the training
and test data (Fig. 2a1,b1). When selecting image pairs with large values in
∆d, large changes between the images were visible, indicating that the rep-
resentation accurately reflected disease progression information (Fig. 2a2,b2).
Additionally, we probed the representation to understand why some image pairs
were incorrectly predicted or had low confidence predictions (Fig. 2a3,b3). We
found that in many cases, the ground truth labels did not match well what was
visible on the images, as the images did not show clear evidence for the labeled
class but rather for one of the others, indicating that many ground truth labels
were noisy. Also, the other class prediction helped to detect corrupted images
with high success.

3.2 Learning an Uncertainty Parameter for Label Noise

Our observation that ground truth labels were unreliable and noisy in many cases
was corroborated by the fact that adjacent B-scans in OCT volumes sometimes
received different labels, despite showing similar structural patterns. Therefore,
we extended our model with a mechanism to discount noisy labels during train-
ing, learning an uncertainty parameter γ for each B-scan pair (Fig. 3a). In fact,
the learned γ was smaller for image pairs close to the decision boundaries. We
found that image pairs with low γ values corresponded to noise from acquisi-
tion, mislabeling or failed registration (Fig. 3b, top to bottom). To verify this
qualitative finding, we analyzed the γ values of examples adjacent in the OCT
volume but labeled differently. We found that 24% of examples labeled better
next to worse had γ values below 0.85, compared to 15% for both better to sta-
ble and worse to stable transitions, while only around 8% for cases remaining in
the same state (e.g. better to better).
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Fig. 4. Our model allows accurate out-of-distribution few-shot nAMD activity classi-
fication. (a) Example OCT B-scans from the in-house dataset. (b) Balanced accuracy
as a function of the number of single B-scans per class for our method (yellow), our
method with noise estimation (green) and a naïve classifier (purple). (c) Inactive vs.
active nAMD B-scans lead to distributions in the zd space (here shown for one fold).

3.3 Out-of-Distribution Few-Shot Disease Activity Classification

Because our model was able to extract a meaningful continuous disease pro-
gression representation from the coarse ordinal labels, we hypothesized that the
representation learned by zd could be used for performing a related task on an
out-of-distribution (OOD) dataset. The in-house dataset consists of 2,886 B-
scans of 50 patients acquired with Heidelberg Spectralis (Fig. 4a) – 878 with
nAMD activity and 2,008 without. The dataset is not publicly available but
was first used in [1] and approved by the local institutional ethics committee.
For evaluation, we mapped the B-scans from 27 patients into the zd space. For
training, we used the remaining 23 patients to optimize the decision boundary
between inactive and active nAMD patients for the zd logits on a small set of
images (we call k-shots, where k is the number of B-scans per class) without re-
tuning the representation in any way. Compared to a logistic regression classifier
on the embeddings of the naïve model, our models showed better nAMD activ-
ity classification performance, even when the decision boundary was determined
using very little data (Fig. 4b). Furthermore, the model with noise estimation
proved to be the most robust model in terms of balanced accuracy, especially
for very few shots (Fig. 4b,c).

4 Discussion

We introduced a novel approach to learn from coarse ordinal disease progres-
sion labels (better, stable or worse) by tailoring a deep learning model to the
task, showing strong few-shot generalization performance on an in-house OOD
OCT dataset on a related, but not identical task of nAMD activity classification.
Our model provided enhanced interpretability by learning a continuous disease
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progression space internally, compared to models directly targeting the classifi-
cation task. Additionally, by explicitly modeling the noise in the ordinal labels,
we were able to explore various sources of label noise and show more robust
OOD performance. In future work, an enhanced backbone architecture could be
used to improve disease progression classification on the MARIO challenge data.
Furthermore, we observed that the stable class and our noise model appear to in-
terfere, leading the model to assign lower gamma values to this class. Therefore,
exploring alternative approaches for modeling label noise (e.g., [5]) could offer
a promising direction for future work. Finally, the disease state space currently
learned by the model is restricted to one-dimension – an insightful ablation ex-
periment would be to investigate how the performance would change if we allow
a higher-dimensional latent representation.
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