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Abstract. Automated radiology report generation (RRG) of routine 2D
and 3D radiographs, such as X-ray and computed tomography (CT), has
great potential in reducing the workload, variations, and errors of report
writing and facilitating patient care. Despite significant advancements
in linguistic quality, existing methods may generate reports with hal-
lucinated type I and II (false positive and false negative) errors, which
limit clinical efficiency. To mitigate the hallucinations, we propose RRG-
DPO, an innovative direct preference optimization procedure with a new
loss term, both tailored for effective alignment with the preference for
clinically accurate RRG. RRG-DPO retrieves a set of highly relevant
reports closest to the preferred response (i.e., the ground truth (GT)
report) in a biomedical CLIP embedding space, and selects the one with
the most significant abnormality conflicts with the GT as the dispre-
ferred response. Besides being clinically relevant and abnormally aware,
this preference data curation process is cost-effective and scalable com-
pared to using large language models for response sampling or evalu-
ation. In addition, we note that except for the abnormality-conflicting
sentences, other sentences of the dispreferred report can legibly describe
the radiograph of the preferred in a clinically equivalent manner, de-
spite variations in expression. Thus, RRG-DPO creates a sub-preferred
report from the dispreferred by deleting the abnormality-conflicting sen-
tences, and promotes its likelihood with a new loss term. RRG-DPO is
evaluated on both 2D X-ray and 3D CT data to align a wide range of
RRG models. Experiments show that it boosts the clinical efficiency of
all assessed models in six metrics: precision, recall, F1 score, RadGraph,
RadCliQ, and RaTEScore, effectively reducing hallucinations. Further
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Fig. 1. Our proposed pipeline for preference data curation. (a) Clinical-relevant and
abnormal-aware dispreferred response selection. Red highlights abnormality-conflicting
sentences in the preferred (y., the ground truth report) and dispreferred (y;, the re-
trieved and selected report) responses for a chest X-ray image x. (b) Sub-preference
response (yl'*') construction by deleting the conflicting sentence from ;.

ablation studies show that our method outperforms DPO and DPOP,
and its components are helpful.

Keywords: Radiology report generation - Direct preference optimiza-
tion - Hallucinated type I and II errors.

1 Introduction

Radiology reports of routine radiographs, such as X-ray and computed tomogra-
phy (CT), serve as essential documentation and facilitate accurate diagnosis and
timely treatment in healthcare. However, the interpretation of radiographs and
manual creation of the reports demands domain expertise, careful observation,
and considerable effort, facing the potential risks of delay or misdiagnosis and
inter-observer discrepancy [6].

Various deep-learning methods were proposed for automatic radiology report
generation (RRG). They usually follow the classic encoder-decoder paradigm [12,
25, 38]. To improve generated reports, researchers advanced model structures un-
der the paradigm, by introducing cross-modal memory modules [10, 34], multi-
modal alignment [42], or new attention mechanisms [36]. Alternatively, external
domain knowledge in graphs [16,20,43], disease tags [18,39,44], longitudinal
data [26], or retrieved reports [23] was incorporated as guidance. Researchers
have recently started leveraging the strong linguistic capability of large lan-
guage models (LLMs) for RRG [9, 40, 4, 21, 8]. Despite significant progress, these
prior approaches treated every word (token) equally for supervised regression of
ground truth reports in training. As a result, the trained models may generate
reports that are consistent with the training data’s writing style and of high-
quality linguistics but not well aligned with radiologists’ preference for clinical
accuracy. Such misalignment causes a high incidence of hallucinated type I (false
positive) and II (false negative) errors, which can lead to factuality issues in gen-
erated reports.

To mitigate the hallucinations, researchers implemented reinforcement learn-
ing (RL) from human (or AI) feedback (RLHF/RLAIF) to align RRG models
with preferences for clinically accurate reports [47]. RLHF methods fit a reward
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model to a preference dataset and then use RL to optimize a policy to pro-
duce responses of high rewards [1]. However, the RLHF pipeline is considerably
more complex than supervised learning and often unstable. It incurs significant
computational costs and major practical challenges. Direct preference optimiza-
tion (DPO) [33] is a stable, lightweight, single-stage algorithm that implicitly
optimizes the same objective as RLHF but without the need to fit a separate
reward model. Essentially solving a classification problem, DPO is straightfor-
ward to implement and train. Several studies have applied DPO for hallucination
suppression and factuality improvement in radiology interpretation/report gen-
eration models [2,15,37]. However, these works employed the preference data
curation processes for natural images, overlooking the clinical relevance of the
generated responses. MMedPO [47] proposed incorporating the clinical relevance
based on GPT-40 evaluation. Yet, its multi-round policy sampling and frequent
GPT-40 evaluation incurred substantial computational and economic costs, lim-
iting scalability. Alternatively, the dispreferred response can be a random report
different from the ground truth (GT). However, our experiments indicate that
this strategy may even harm the performance of the initial policy.

This paper introduces RRG-DPO, an innovative DPO procedure with a new
loss term, both tailored for effective alignment with the preference for clinically
accurate RRG, thus reducing hallucinated type I and II errors. Our three primary
contributions are the following. (1) Clinical-relevant and abnormal-aware
preference data curation (Fig. 1(a)). We first retrieve from the training data
a set of reports closest to the preferred response y,, (i.e., the GT report) in
the BiomedVLP [5] embedding space. Unlike a random report, which can be
easily distinguished thus reduces the alignment effect, the retrieved reports are
highly clinically relevant to the preferred response. Next, we pick the retrieved
report with the most significant discrepancies from the preferred response re-
garding described abnormalities as the dispreferred response ;. Despite the
overall high similarity, the abnormal-aware selection ensures valid abnormal-
ity conflicts between the (dis)preference pair, mimicking hallucinated type I and
IT errors. In addition, the curation process is computationally and economically
efficient compared with employing LLMs for sampling or evaluating dispreferred
responses. (2) Sub-preference optimization (Fig. 1(b)). We note that, for
the first time in the literature on DPO for RRG, except for the abnormality-
conflicting sentences, other sentences of y; can legibly describe the radiograph of
Y in a clinically equivalent manner, despite variations in expression. Therefore,
we propose creating a sub-preferred report ler from the dispreferred by deleting
the abnormality-conflicting sentences, and promoting its likelihood relative to
the reference policy with a new loss term. (3) Comprehensive study. We ap-
ply our RRG-DPO to both 2D X-ray and 3D CT data to align a wide range of
representative RRG models. Experimental results show that our method boosts
the clinical efficiency (CE) in precision, recall, and F1 score, and three clini-
cal entity- and relation-based metrics (RadGraph, RadCliQ, and RaTEScore) of
all evaluated models, effectively reducing hallucinations. Notably, we achieve a
new state of the art for the CE metrics on the MIMIC-CXR dataset [19]. Fur-
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Fig. 2. Our proposed RRG-DPO advances the DPO pipeline for RRG with three
novel components: (a) embedding-based clinical-relevant dispreference retrieval, (b)
abnormal-aware dispreferred response selection, and (c) sub-preference optimization.

ther ablation study shows that our method outperforms DPO and DPO-positive
(DPOP) [29], and its components are helpful.

2 Method

Preliminaries: Direct Preference Optimization. Preference optimization
[1] has proven effective in finetuning language models to align model behavior
with human preferences. In preference optimization, a relative preference dataset

D = {x(i),yg),yl(i)}izl is curated and used for the alignment, where yf,f) and

yl(i) are a pair of comparatively preferred and dispreferred responses for the it"
input (Y. DPO [33] is a theoretically justified algorithm for relative preference
optimization without reinforcement learning. It directly optimizes for the policy

mo(y | «) best satisfying the preferences with a simple classification objective:

. _ 7o (Yw | T) mo(y1 | )
£oro(m: Tat) = ~Eie 1 05 (S1ow T L — g1og L) L (1)
where o is the sigmoid function, S is a regularization parameter corresponding to
the strength of the Kullback-Leibler (KL)-regularization in RLHF, and ¢ is the
reference policy. For a native DPO implementation for comparison experiments,
this work takes the GT report of a radiograph as the preferred response y,, and
another random report from the training set as the dispreferred ;.

Method Overview. Our RRG-DPO advances the current DPO pipeline for
RRG from two aspects. (1) For preference data curation, we propose embedding-
based clinical-relevant dispreference retrieval (Fig. 2(a)) followed by abnormal-
aware dispreferred response selection (Fig. 2(b)). This approach avoids the cost
of fabricating and evaluating dispreferred responses using LLMs while ensuring
high clinical relevance and diagnostic discrepancy with the preferred response
Yw- (2) For the training objective, we supplement the standard DPO and derived
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DPO-positive (DPOP) [29] losses with a new term to maintain the probability
of the sub-preferred content in the dispreferred response y; (Fig. 2(c)).

Preference Data Curation. Given a radiology image x, we take its ground-
truth report as the preferred response v,,, and curate the clinical-relevant and
abnormal-aware dispreferred response y; from training data in two steps.

Clinical-relevant dispreference retrieval. Studies [28] have shown that vision-
language models such as CLIP [32] are an effective source of preference for fixing

hallucinations. Being motivated, we retrieve a set of INV; reports {yl(” )}jy:ll whose

text embeddings are closest to that of y,(j) in cosine similarity from the training
data, using the text encoder of BiomedVLP [5]. Being authentic clinical reports,

the retrieved {yl(m )} possess significant clinical relevance compared with the re-
sponses generated by processes proposed for natural images [2, 15, 37]. They are
also semantically similar to the GT and thus are hard negatives for effective pref-
erence optimization. Meanwhile, the retrieval operation is more computationally
efficient than LLM sampling [41, 47].

Abnormal-aware dispreferred response selection. To align the policy mg with the
clinical preference for low type I (false-positive) and II (false-negative) errors,
the ideal dispreferred report should present diagnostic hallucinations compared
with the GT. However, this requirement cannot be guaranteed by the above-
described step alone. Therefore, in the second step, we use the CheXbert [35]
model to label each training report for 14 abnormalities (including a “No Finding”
category), obtaining a 14-dimension binary multi-hot vector. Then, we compute

the Jaccard distance between the label vectors of {yl(i’j )} and that of yg), and

pick the yl(” ) with the largest distance as the dispreferred response yl(i). This
approach selects the report with the most significant abnormality discrepancies
with the GT from a set of highly clinical-relevant candidates, thus maximizing

the contrastive value between yl(i) and y,(j) for preference optimization.

Sub-Preference Optimization. Studies have shown that the native DPO loss
(Eqn. (1)) may lead to a reduction of the model’s likelihood of the preferred
responses, especially when preferred and dispreferred responses only differ by a
few tokens. The analysis of Pal et al. [29] suggested that this happens because
DPO increases the probability of the token(s) that differ but decreases that of
subsequent tokens. Thus, they proposed the DPO-positive (DPOP) loss, which
explicitly penalizes the decrease of the preferred responses’ likelihood relative to

the reference policy by adding a term max (O, log w) to DPO. DPOP has

7o (ywlw)
proven effective on various natural language benchmarks and tasks. However, it

only focuses on positive (i.e., preferred) responses but omits the impact of the
dispreferred. Take y,, and y; in Fig. 1 for example. Except for the abnormality-
conflicting sentences, other sentences of y; can also legibly describe the corre-
sponding contents of the image z in a clinically equivalent manner, despite the
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differences in expression. As a result, entirely suppressing y; may undesirably
decrease the likelihood of generating its clinically legible content for x.

To tackle this issue, we propose to create a sub-preferred report yl+ by deleting
the abnormality-conflicting sentences from y; (Fig. 1(b)), and promote le”s prob-
ability with respect to the reference policy. To identify abnormality-conflicting
sentences, we first split y; into sentences separated by periods. Then, we apply
the abnormality classifier CheXbert [35] to each sentence and obtain a label
vector. A sentence is considered abnormality-conflicting if its label vector differs

from y,,. Note that there can be multiple abnormality-conflicting sentences in ;.
T + .
Next, we add a penalty term max (O, log %) to the DPOP loss to main-
Y
ﬂ!’ef(y;r|x) < :
mot ) = L (e
the probability of y;r given the current policy 7y is not lower than the reference
policy 7ref), and increases otherwise. Thus, our complete RRG-DPO loss is:

tain a high log-likelihood of yl+ This penalty term is 0 when

To(Yuwlt) W@(yl\w))

LRRG- Tret) = —E 1 (1
RRG-DPO (T} M) <z,yw,yhy¢>~9{0gg(5 8 rei(yale) % Tres(le)

Tret (Yuw|2) Tret (' |) )
A 0,log ———+) —7- 0,log ———-= ;
max( og o (Yu|2) ) v max( og ﬂe(yflm) )
(2)
where 8, \,and  are weights.

Training Procedure. Our RRG-DPO follows the standard DPO pipeline.
First, we train a reference policy m..s via supervised regression on training data.
Then, we create a preference dataset from the training data. Lastly, we finetune
Tret ON the preference dataset with the loss in Eqn. (2), to obtain the optimal pol-
icy mg aligned with the clinical preference for diagnostically correct reports. The
preference data curation and sub-preference computation for all experimental
data used in this work are efficiently done offline beforehand in ~4.6 hours.

3 Experiments

Datasets and Evaluation Metrics. To comprehensively validate our pro-
posed approach to RRG, we conduct experiments on two typical radiographs
frequently performed in daily clinics: chest X-ray (CXR) and CT, which repre-
sent 2D and 3D radiography, respectively. MIMIC-CXR [19] is a large dataset
of CXR images and paired reports. We follow the official split and the prepro-
cessing in [11], resulting in a processed dataset of 270,790, 2,130, and 3,858 sam-
ples for training, validation, and testing, respectively. CT-RATE [13] includes
25,692 non-contrast chest CT volumes with corresponding reports of 21,304 pa-
tients. Following [13], we standardize all CT volumes to the voxel spacing of
0.75x0.75x1.5 mm?®. The volumes are center-cropped or padded to a consis-
tent size of 480x480x240 voxels. We use the official training set (24,128 vol-
umes /20,000 patients) for training, and split the official test set into a validation
(360 volumes/300 patients) and a testing set (1,204 volumes/1,004 patients).
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Table 1. Report generation performance on 2D MIMIC-CXR (top) and 3D CT-RATE
(bottom) datasets. We use the official codes for all base models except for [7] (official
checkpoint used) and [9] (reimplemented by us). *: p < 0.05 for pair-wise comparison
between baseline models and our RRG-DPO results by the Wilcoxon signed-rank test.

‘ CE metrics ‘ NLG metrics ‘ RRG-exclusive metrics
Methods [Pre. 1 Rec. 7 F1{ [BL-41 MTR { RG-L 1|RadGraph 1 RadCliQ | RaTEScore 1
2D MIMIC-CXR

R2Gen [11] 0.347 0.258 0.276 | 0.107 0.139 0.277 0.172 2.788 0.483
+ RRG-DPO |0.405" 0.364" 0.360"|0.117" 0.154" 0.282" 0.197" 2.714" 0.505"
EKAGen [7] 0.456 0.367 0.380 | 0.119 0.156  0.286 0.201 2.685 0.487
+ RRG-DPO | 0.462 0.487" 0.443"| 0.112 0.166 0.286 0.207" 2.674" 0.502"
PromptMRG [18]| 0.504 0.507 0.476 | 0.107 0.154  0.268 0.190 2.733 0.484
+ RRG-DPO | 0.508 0.516 0.483 | 0.108 0.154 0.268 0.191 2.731 0.488
R2GenGPT [40] | 0.398 0.265 0.318 | 0.112 0.144  0.262 0.118 2.864 0.430
+ RRG-DPO | 0.409 0.296" 0.343"| 0.114 0.147 0.266 0.159" 2.772" 0.454"
3D CT-RATE

CT2Rep [14] 0.206 0.073 0.099 | 0.251 0.275 0.377 0.430 2.001 0.647

+ RRG-DPO |0.275" 0.232" 0.233"| 0.248 0.271 0.378 0.442" 1.978 0.652
3D-CT-GPT [9] | 0.335 0.197 0.225 | 0.221 0.274 0.333 0.435 2.104 0.619
+ RRG-DPO |0.342" 0.263" 0.252"| 0.218 0.272 0.338 0.442 2.075" 0.632"

Following the literature convention [18,27], we evaluate model performance
using both natural language generation (NLG) metrics and example-based CE
metrics. The former include BLEU-4 [30], METEOR [3|, and ROUGE-L [22].
The latter include precision, recall, and F1 scores, calculated by converting re-
ports into 14 abnormality classification labels using CheXbert [35]. Besides the
conventional metrics mentioned above, we also employ three additional metrics
that were proposed more recently and exclusively for RRG for a more compre-
hensive evaluation: RadGraph [17], RadCliQ [45], and RaTEScore [46].

Implementation. The experiments are conducted with PyTorch (2.0.0) [31] on
one NVIDIA Tesla V100 GPU with 32GB memory. For the reference policy e,
we use publicly available codes [11,14,18,40] or checkpoint [7] released by the
authors, if available. For preference optimization, the optimizer is AdamW [24]
with the learning rate and weight decay set to 10~7. The model is trained for
three epochs with our proposed RRG-DPO objective. The batch size is 16 for
CXRs and 1 for CT. We only finetune the text decoders (BERT or LLM) for
preference optimization. The number of retrieved reports N; is empirically set to
20. For the weights in Eqn. (2), we set 8 = 0.3 following [29] and A = 1,7 = 0.1
based on preliminary experiments. Our implementation, including visual analysis
and the alignment data, is available at: https://github.com/ccarliu/RRG-DPO.

RRG-DPO Performance. We demonstrate the effectiveness of our proposed
RRG-DPO by applying it to preference optimization of various RRG models.
For 2D CXR images, these include a classical method R2Gen [11], two well-
performing up-to-date methods EKAGen [7] and PromptMRG [18], and an
LLM-based method R2GenGPT [40]. The results are shown in Table 1 top.
Our RRG-DPO improves the CE metrics for all base models, e.g., the recalls
of R2Gen and EKAGen increase from 0.258 and 0.367 to 0.364 and 0.487, re-



8 H. Liu et al.

Table 2. Ablation study results on MIMIC-CXR using the EKAGen model [7]. *: p <
0.05 for pair-wise comparison between ablated variants and our full model (f) by the
Wilcoxon signed-rank test.

Dispreferred response Training objective CE metrics NLG metrics RRG-exclusive metrics
Ablat. Clinic- Abnormal- RRG- . o - g
. |Random DPO DPOP Pre. Rec. F1 | BL-4 MTR RG-L |RadGraph RadCliQl RaTEScore

config. relevant  aware DPO

(a) X X X X x x 10.456" 0.367" 0.380" | 0.119 0.156™ 0.286 | 0.201" 2.685" 0.487"

(b) v X X v X X 0.413* 0.360" 0.359" [0.082" 0.154* 0.256"| 0.142* 3.023* 0.474"

(c) x v x v x x 0.445" 0.425" 0.407"|0.101" 0.163 0.277*| 0.186" 2.750* 0.478"

(d) X v v v X X 10.441* 0.459* 0.420%|0.094* 0.168 0.267%| 0.196* 2.713° 0.496

(e) X v v v v x| 0.455 0.467° 0.427"| 0.107 0.172 0.283 | 0.200" 2.687 0.496

(f) x v v v v v |0.462 0.487 0.443|0.112 0.166 0.286| 0.207 2.674 0.502

spectively. Notably, PromptMRG+RRG-DPO obtains the precision, recall, and
F1 score of 0.508, 0.516, and 0.483, respectively, which, so far as we know, es-
tablish a new state-of-the-art on the MIMIC-CXR dataset among peer-reviewed
literature. Meanwhile, RRG-DPO also improves all the RRG-exclusive metrics
while maintaining the NLG performance of the base models. For 3D CT images,
the RRG models include CT2Rep (encoder-decoder architecture with relational
memory) [14] and 3D-CT-GPT (LLM-based) [9]. As shown in Table 1 bottom,
our RRG-DPO significantly improves the CE metrics of both models, e.g., the
precision, recall, and F1 score increase by 0.069, 0.159, and 0.134 on CT2Rep.
It also improves all RRG-exclusive metrics. Meanwhile, the NLG metrics are
comparable after preference optimization. To conclude, the experimental results
of our RRG-DPO on both 2D CXR and 3D CT data and various models demon-
strate its effectiveness in aligning RRG models with the clinical preference for
diagnostically correct reports—without harming linguistic efficiency.

Ablation Study and Comparison with DPO and DPOP. To validate the
efficacy of the proposed components in RRG-DPO, we conduct a comprehensive
ablation study (Table 2). We compare the performance of several DPO variants
using the EKAGen base model [7] (row (a)) on MIMIC-CXR. In row (b), the
native DPO uses a random report in the training set as y;, which degrades all
metrics. We conjecture this is because the random report is easily distinguishable
from the preferred response, adversely impacting the alignment. Rows (c) and
(d) employ our clinical-relevant dispreference retrieval (using a random report
from all retrieved ones as y;) and abnormal-aware dispreferred response selection,
both achieving notable improvements in recall and F1 score with minor decreases
in precision. Regarding training objectives, row (e) employs the DPOP loss and
obtains moderate improvements upon row (d) for most metrics. Finally, row (f),
our full RRG-DPO approach, adds the proposed sub-preference optimization,
achieving the best performance of all DPO variants (not including the non-
DPO baseline) for eight of the nine metrics. Notably, all DPO variants except
our full approach decrease the ROUGE-L metric. Our approach maintains the
base model’s NLG performance while substantially improving CE metrics. These
results indicate that our clinical-relevant and abnormal-aware dispreference data
curation can effectively improve the clinical efficiency of RRG models via DPO
and that the proposed sub-preference optimization helps further improve clinical
efficiency while maintaining NLG performance.
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4 Conclusion

This work proposed RRG-DPO, a novel direct preference optimization procedure
with a new loss term tailored for aligning radiology report generation (RRG)
models with the preference for clinically accurate reports. RRG-DPO’s effective-
ness was validated on 2D and 3D radiography to align various RRG models.

Limitations & Future Work. Due to hardware constraints, this work only
evaluated the proposed RRG-DPO on LLMs of moderate sizes (i.e., 7B). It
would be helpful to experiment with significantly larger LLMs to study scala-
bility. Based on preliminary experiments, this work employed BiomedVLP [5]
for clinical-relevant dispreference retrieval and the classical CheXbert [35] to
make abnormal-aware dispreference and sub-preference decisions. There is po-
tential for better performance when using a more advanced retrieval model, and
a classifier that can handle more abnormalities with greater accuracy.
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