
Spherical Diffusion Process for Score-Guided
Cortical Correspondence via Spectral Attention

Seungeun Lee1, Sergey Pyatkovskiy2, Jaejun Yoo⋆2, and
Ilwoo Lyu⋆3[0000−0001−5868−9603]

1 AI Research Team, Klleon, Seoul, South Korea
2 Graduate School of Artificial Intelligence, UNIST, Ulsan, South Korea

3 Graduate School of Artificial Intelligence, POSTECH, Pohang, South Korea
jaejun.yoo@unist.ac.kr,ilwoolyu@postech.ac.kr

Abstract. Cortical shape correspondence is a crucial problem in medi-
cal image analysis, primarily focused on aligning cortical geometric pat-
terns across individuals. This task is particularly challenging due to the
intricate geometry of the cortex and the substantial anatomical vari-
ability among individuals. In this work, we introduce a novel approach
comprising (1) a spherical diffusion process and (2) a spectral atten-
tion for robust shape correspondence construction, wherein a score func-
tion from the diffusion process guides a deformation to align cortical
geometric features on sphere. Specifically, we propose a smooth diffu-
sion process on sphere by introducing a stochastic differential equa-
tion in a spherical harmonic space, where we learn the score function
that encodes the distribution of subjects. Furthermore, to effectively
guide the alignment of cortical geometric patterns using the learned
score function, we propose a novel attention mechanism that computes
frequency correlations in the spectral domain, enabling efficient con-
ditioning of the score function in this domain. Experimental results
demonstrate that our method achieves highly accurate shape correspon-
dence while minimizing the distortions. The code is available at https:
//github.com/Shape-Lab/SPHARM-Reg-Diffusion.

Keywords: Cortical correspondence · Spherical diffusion process · Spec-
tral attention.

1 Introduction

Cortical shape correspondence is essential for spatial alignment in shape analysis,
matching cortical surfaces across individuals via geometric features. Traditional
methods [10,28,24,22,21] use shape deformation, mapping surfaces onto a com-
mon space, typically a sphere, and optimizing deformation for feature similarity
and smoothness. These methods align geometric features like sulcal depth, as-
suming structural and functional correspondence. Recently, learning-based ap-
proaches [4,26,29,19,18] have gained popularity, leveraging neural networks to
⋆ Co-Corresponding Author.
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predict deformation fields in an end-to-end manner. While the approaches have
demonstrated substantial advances in shape correspondence, they still suffer
from the challenge of large anatomical variability across subjects. As a result,
finding an optimal and robust correspondence for arbitrary subjects remains an
open problem.

Recently, diffusion models [25,13,5,8,14] have been actively applied to various
medical imaging analysis. Several studies [16,30,23] have proposed leveraging a
score function of diffusion models to compute correspondence between volumetric
images on Euclidean space. These studies have found that the score function
captures the underlying distribution of source data and encodes the transition
density between a pair of images. Consequently, the learned latent features have
shown to establish robust correspondence for arbitrary subjects at test time.
However, directly applying the diffusion model to non-Euclidean space is non-
trivial, as it lacks a proper geometric inductive bias, as discussed in [15,7,20].

In this paper, we propose a novel spherical diffusion model for shape cor-
respondence. The diffusion process on manifold is governed by the Riemannian
Laplace-Beltrami operator [15,7,20], which lacks a closed-form solution in high-
dimensional spaces, leading to inaccurate and instable approximations [15,7,20].
However, we observe that on sphere, this operator can be explicitly defined
using spherical harmonic (SH) coefficients and basis functions via the SH trans-
formation (SHT) [6]. This allows us to estimate the score function in SH space,
leveraging geometric features of the cortical surface mapped onto the sphere.
Furthermore, we introduce a spectral attention to provide the semantics as a
condition to guide shape correspondence. This prevents information dilution
while reducing computational overhead of spatial attention, ultimately estab-
lishing robust shape correspondence for unseen subjects during training. Our
main contributions can be summarized as follows:

– We propose a novel score-based spherical diffusion model by formulating the
diffusion process as a heat equation using the spherical harmonic transfor-
mation, effectively capturing spherical geometry.

– We leverage the learned score function to model the transition density be-
tween cortical features, improving robustness in cortical correspondence.

– We introduce a spectral attention mechanism in the spherical harmonic
space, reducing computational overhead compared to spatial attention.

– Extensive experiments demonstrate that our method well establishes the
shape correspondence with improved accuracy and reduced distortion.

2 Methods

We formulate spherical deformation for cortical shape correspondence (Sec. 2.1),
describe the base architecture to estimate a deformation field (Sec. 2.2), intro-
duce a novel spherical diffusion model to estimate a score function (Sec. 2.3),
and present a spectral attention mechanism, enabling efficient conditioning of
the score function, and enhancing robustness for the shape correspondence (Sec.
2.4). Fig. 1 illustrates a schematic overview of the proposed method.
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Fig. 1: Overall process of our proposed method. Given source and target geometric fea-
ture M,F , we first perform reverse process of spherical diffusion model, using denoising
network to estimate score sϵ on SH space. We pass sϵ to the deformation network gψ
along with attention mechanism on spectral domain, while taking the M and F as
inputs to gψ. At the end, the estimated Φ is multiplied to M to align with F .

2.1 Problem Formulation

The shape correspondence aims to estimate a deformation field Φ : S2 → S2
to align a source geometric feature M : S2 → R to a target geometric feature
F : S2 → R, mapped onto a sphere with N uniformly sampled points (θ, ϕ) ∈
[0, π]× [−π, π], such that F (θ, ϕ) =M(Φ(θ, ϕ) for ∀(θ, ϕ) ∈ S2.

2.2 Underlying Learning-based Cortical Correspondence

We adopt the base architecture of [19,18] as the deformation network gψ which
takes M and F as input to estimate Φ. gψ is jointly optimized over the similarity
and regularization loss functions. The similarity term minimizes the L2 loss to
align M ◦ Φ to F :

Lsim(F,M ◦ Φ) = 1

N

N∑
i=1

(F (θi, ϕi)−M ◦ Φ(θi, ϕi))2 . (1)

The regularization term aims to reduce distortion of Φ by minimizing the arc
length changes, between the deformation grids before and after deformation for
spherical location x = (θ, ϕ) with its neighborhoods Nx ⊂ S2:

Lreg(Φ) =
1

2

∑
y∈Nx

(cos−1(xTy)− cos−1(Φ(x)TΦ(y)))2. (2)

Based on this baseline gψ, we leverage score function learned from diffusion
process on S2 manifold as a prior to achieve robust shape correspondence.

2.3 Spherical Diffusion Model

Definition. Let us consider a input F , and a condition M . Our spherical dif-
fusion model aims to learn a score function that captures the transition infor-
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mation from M to F during diffusion process. To introduce a smooth diffu-
sion process with a geometric inductive bias on the S2 manifold, we construct
the spherical heat equation as a stochastic differential system (SDE) over time
t ∈ {0, 1, · · · , T}:

∂F (θ, ϕ, t)

∂t
= ∆S2F (θ, ϕ, t), (3)

where ∆S2 is the Laplace-Beltrami Operator on S2. Furthermore, a spherical
signal can be re-expressed using the SHT as a linear combination of spherical
coefficients ckl ∈ R and SH basis functions Y kl ∈ R with SH degree l and order k.
Since the LBO of the SH basis function has a known analytic form [6], the SDE
on S2 is reformulated as follows:

∂F (θ, ϕ, t)

∂t
= ∆S2

∞∑
l=0

l∑
k=−l

ckl (t)Y
k
l (θ, ϕ) =

∞∑
l=0

l∑
k=−l

−l(l + 1)ckl (t)Y
k
l (θ, ϕ). (4)

Forward Process. Therefore, the diffusion process is represented in the SH
space using the aforementioned known heat kernel. That is, the generalized Rie-
mannian SDE [15,20] can be specialized to S2 using the spherical harmonic heat
kernel. Instead of perturbing F , the ckl are perturbed along with the SDE:

dckl (t) = −l(l + 1)ckl dt+ σtdW
k
l (t), (5)

where W k
l (t) ∈ R is an independent Brownian motion [25], and σt controls the

noise magnitude which is calculated as
√
1− e−2l(l+1)t . By solving the above

differential equation through numerical integration, the coefficient ckl at time t
is obtained as follows:

ckl (t) = ckl (0)e
−l(l+1)t + σtw

k
l , (6)

where wkl ∼ N (0, I) is Gaussian noise. This formulation ensures that high-
frequency components decay faster than low-frequency ones, progressively trans-
forming the signal into isotropic Gaussian noise over time.

Reverse Process. The reverse process restores the original signal by solving the
time-reversed SDE [1]. To obtain the transition density from M to F , We model
the reverse process as conditional SDE. In high-dimensional manifolds, there
is no closed-form solution for solving the time-reverse SDE because the basis
functions that constitute the heat kernel are unknown, as discussed in [15,20].
However, on S2 manifold, the heat kernel and its basis functions are known in
the form of SH, allowing the closed-form solution of the time-reverse SDE to be
computed as the inverse function of the heat kernel. The solution at the previous
step t− 1 is computed as follows:

ckl (t− 1) = l(l + 1)ckl (t) +∇ckl
log pt(c

k
l (t)|ĉkl (t)) + σtζ, (7)
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where ĉkl (t) is conditional SH coefficient of M , ζ ∼ N (0, I) is time-reversed
Gaussian noise, and ∇ckl

log pt(c
k
l (t)|ĉkl (t)) is a conditional score function mod-

eling the gradient of the log-density.

Denoising Network & Training. The score follows a complicated marginal
probability density, making it difficult to model directly, as discussed in [13,25].
Therefore, we approximate ∇ckl

log pt(c
k
l (t)|ĉkl (t)) using a neural network sϵ(·)

given ckl (t) and ĉkl . To compute the score function with ckl (t) and ĉkl (t) of F and
M , we utilize SPHARM-Net [12], which is well-suited for our purpose as it trans-
forms spherical signals into the SH space and performs convolution operations.
For training, we modify the Riemannian score matching objective [15,20] for S2
with approximated score ckl /σ

2
t :

Lscore(ϵ) = Et,ĉkl ,ckl [||sϵ(c
k
l , ĉ

k
l , t) +

ckl
σ2
t

||2]. (8)

In result, we can train a denoising network sϵ(·) using the simplified score match-
ing objective on the sphere to obtain the conditional score function that encodes
the transition density. The denoising network sϵ and deformation network gψ
are jointly optimized by minimizing the combination of Lscore, Lsim, and Lreg:

argmin
ψ,ϵ

Lscore(ϵ) + λ0Lreg(ψ) + λ1Lsim(ψ), (9)

where λ0, λ1 are balancing weight factors between the loss functions.

2.4 Spectral Attention

From the score-based conditional spherical diffusion model, we learn the distri-
bution of the source data and obtain the output of the denoising network sϵ(·) at
the last time step, which encodes the transition density from the source feature
M to the target feature F . To estimate Φ for the robust correspondence, we pro-
vide this as a condition to gψ. However, its simple concatenation as an input to
gψ may dilute the information as propagated through the network. To effectively
reflect sϵ(·) in gψ, we incorporate a cross-attention mechanism into each layer of
the warp module. In conventional approaches, a cross-attention is computed over
spatial sampling points. This unfortunately requires 1.6B combinations for 40K
vertices of the unit sphere, which is computationally demanding. To address this
issue, we make the attention mechanism work in the spectral domain. Firstly, we
map sϵ(·) to E ∈ R(L+1)2×de with MLP, where L = 40 is SH bandwidth. Follow-
ing the convention in a general attention mechanism [27] with a hidden dimension
dh, we let its query, key, and value be Q ∈ R(L+1)2×dh , K ∈ R(L+1)2×dh , and
V ∈ R(L+1)2×dh , respectively. The proposed attention mechanism is then per-
formed over the E and intermediate feature H(i) ∈ R(L+1)2×d(i) of gψ’s i-th layer
in SH space. Specifically, these values are calculated via matrix multiplication:

Q = H(i) ·W (i)
Q , K = E ·W (i)

K , V = E ·W (i)
V , (10)
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Table 1: Ablation study for spherical diffusion and spec-
tral attention. Each component improves the shape cor-
respondence, preserving geometric properties.

Accuracy Areal Distortion
Method MSE↓ NCC↑ Mean↓ Median↓ P95↓
Ablated Model 0.307 0.899 0.289 0.225 0.775
+ Spherical Diffusion 0.301 0.904 0.282 0.214 0.755
+ Spectral Attention 0.294 0.910 0.275 0.204 0.750

0.1 0.2 0.3 0.4 0.5
Areal Distortion

0.845

0.870

0.895

0.920

0.945

NC
C

FS SD MSM HSD Lee et al. Ours

Fig. 2: Comparison at multiple regulariza-
tion levels for each baseline and ours (x-
axis: areal distortion, y-axis: NCC).

Table 2: Bold: best. Blue: q < 0.05. Our method significantly outperforms the comparison methods
in terms of registration accuracy and distortion.

Accuracy Areal Distortion Edge Distortion
Method MSE↓ NCC↑ Dice↑ Mean↓ Median↓ P95 ↓ Mean↓ Median↓ P95 ↓

FS 0.313 0.898 0.874 0.322 0.267 0.792 0.136 0.109 0.349
SD 0.309 0.898 0.873 0.320 0.250 0.861 0.153 0.117 0.418
MSM 0.311 0.891 0.863 0.573 0.404 1.703 0.257 0.196 0.708
HSD 0.305 0.898 0.872 0.306 0.234 0.830 0.146 0.116 0.385
Lee et al. 0.307 0.899 0.871 0.289 0.225 0.775 0.144 0.112 0.384
Ours 0.294 0.910 0.880 0.275 0.204 0.750 0.131 0.103 0.349

where W (i)
Q ∈ Rd(i)×dh , W (i)

K ∈ Rde×dh , and W (i)
V ∈ Rde×dh are learnable projec-

tion matrices. We then perform attention operations, softmax(QK⊤) ·V , which
generates an (L+1)2-by-dh matrix. Finally, we define another MLP that recov-
ers the attention back into an (L+ 1)2-by-d(i) matrix. It is noteworthy that the
proposed approach can significantly speed up the attention operations regardless
of the spherical tessellation (i.e., only (L+ 1)4 combinations required).

3 Experimental Setup

Dataset. We used the HCP dataset [11] (1,113 scans) for training only and
the Mindboggle dataset [17] (101 scans) with manually annotated parcellation
labels of 32 regions for testing.1 Cortical surfaces were reconstructed with their
invertible spherical mappings by a standard FreeSurfer pipeline [9]. The spheres
were re-tessellated via icosahedral subdivision of level 6, with N = 40, 962 [2].
Evaluation. We measured the Dice score, mean squared error (MSE), and nor-
malized cross-correlation (NCC) to assess the alignment accuracy, with higher
Dice score, NCC, and lower MSE indicating better alignment. We also measured
areal [24] and edge [21] distortion to evaluate shape distortion, with the lower
values indicating the better alignment while preserving the surface topology.
Implementation Details. For comparison with previous cortical shape corre-
spondence methods [10,28,24,21,19], we adopted their settings using sulcal depth
as the geometric feature and the Freesurfer fsaverage atlas. Notably, our model
is not restricted to this feature and supports others. For denoising network, we

1 https://mindboggle.readthedocs.io/en/latest/labels.html

https://mindboggle.readthedocs.io/en/latest/labels.html
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Fig. 3: Region-wise Dice score comparison. The statistical significance is reported after
FDR [3] at q = 0.05. Our method significantly improves the score for a total of 17, 17,
24, 15, and 18 out 32 regions against FS [10], SD [28], MSM [24], HSD [21], and Lee
et al. [19], respectively. Meanwhile, degraded performance is revealed in a total of 5,
1, 2, and 1 out of 32 regions compared to FS, SD, MSM, and Lee et al.. *: improved
performance. *: degraded performance. For brevity, the annotation label numbers of
these regions follow the DKT protocol; see [17] for the complete nomenclature.

Source FS SD MSM HSD Lee et al. Ours Target
High

Low

Fig. 4: Visual inspection of an example subject: exponentiated areal distortion (1st
row), and parcellation maps (2nd–3rd rows). Our method particularly reduces the
distortion at the supramarginal region (white box), along with anatomical parcellation
alignment at the boundaries of the postcentral area (cyan, yellow & magenta arrow).

set SH bandwidth to 40. In spectral attention, for the i-th layer of gψ, we set
de = d(i) and dh = 2 · d(i).

Baselines. We compared our method to public cortical shape correspondence
methods, including FreeSurfer (FS) [10], Spherical Demons (SD) [28], MSM [24],
HSD [21] and Lee et al.’s. [19]. To achieve fair comparison across all meth-
ods, we ran parameter optimization and report performance across all runs: FS
with distance factors [1, 3, 5, 7], SD with smoothing iterations [1, 3, 5, 7, 9], MSM
with regularization weight [0.2, 0.3, 0.5, 0.7, 0.9], HSD with distortion regulariza-
tion

[
1/82, · · · , 1/202

]
, and Lee et al. with smoothing weight [1/40, · · · , 1/10].
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4 Results

Ablation Study. To validate the effectiveness of our proposed method, we con-
ducted ablation studies on the spherical diffusion and spectral attention. Starting
from the base architecture, we sequentially added each modules. We report the
results of this experiment in Table 1. We observed that spherical diffusion im-
proved alignment by 1.95% and reduced distortion by 2.42%. Similarly, spectral
attention enhanced alignment by 2.33% and reduced distortion by 2.42%. Each
component demonstrated a significant performance improvement, indicating that
our method establishes robust correspondence on unseen subjects during train-
ing. To ensure fair comparison, we tuned the weighting factors of regularization
terms for baseline methods (see Sec. 3) and also varied the balancing weight λ0
in our method within [10, 15, 20, 25, 30, 35] while fixing λ1 = 1. Fig. 2 plots the
alignment accuracy of all methods, varying the level of regularization. We ob-
served a consistent trade-off between accuracy and distortion across all methods.
Nevertheless, our method demonstrated superior the accuracy when all meth-
ods exhibited similar levels of distortion, indicating that our method has higher
model capacity than others.

Comparison to Baselines. Table 2 summarizes the overall performance in reg-
istration accuracy and distortion. To ensure fair comparison, we selected models
with similar registration accuracy (∼0.3 MSE) and compared distortion reduc-
tion. Our method outperformed all baselines, particularly in reducing shape
distortion with a statistical significance. It is noteworthy that the generaliza-
tion performance of our method is comparable to that of traditional iterative
optimization-based methods, which have been widely used and maintained for
decades. In other words, unlike traditional methods that perform a repetitive
optimization process for each individual subject, our neural network-based ap-
proach achieves improved alignment accuracy while preserving low distortion,
even on test subjects unseen during training. Additionally, region-wise Dice
scores (Fig. 3) show significant improvement in most of the 32 regions, with
minor degradation in a few regions.

This suggests that the score function from the diffusion process further refines
region-wise alignment, while capturing both semantics and latent trajectories to
the target. For qualitative evaluation, we computed group-average and sample-
specific areal distortion maps, as well as parcellation maps (Figs. 4 and 5). The
results confirm improved alignment in that our approach well-establishes the
shape correspondence on the unseen subjects during training.

5 Conclusion

In this work, we proposed a novel framework for cortical shape correspondence
that integrates a spherical diffusion process and a spectral attention mechanism.
We defined a specialized diffusion process on S2 by establishing heat equation
based on SHT. By learning a score function in SH space, our method effectively
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Fig. 5: The group average maps of exponentiated areal distortion across participants.
Our method overally decreases the distortion, notably in the postcentral, supra-
marginal, parahippocampal and lingual regions (yellow).

captured the distribution of cortical shapes and guided geometric alignment in a
principled manner. Additionally, spectral attention mechanism enabled efficient
conditioning of the score, enhancing robustness of correspondence construction.
Experimental results demonstrated the effectiveness of our approach in achieving
highly accurate cortical shape correspondence while preserving geometric prop-
erties. These findings suggested that our method provides a promising direction
for improving cortical shape analysis in medical imaging applications.
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